The Call For Continuous Monitoring Can No Longer Wait

Continuous monitoring is no longer an option; it is essential for the protection against special hazards in critical infrastructure. Clean agents are designed to operate in limited spaces where there is a need for speed of suppression given the asset risk and where the space is occupied by people. They deliver the infrastructural resilience our advanced society requires. The assumptions in the installation, commissioning and maintenance of gaseous extinguishing systems is that they are highly pressurised but risk leaking and discharging. ISO 14520 specifically guides our industry as to these risks; In 9.2.1.3 The storage container contents shall be checked at least every six months as follows. : a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced. b) Non-liquefied gases: for inert gas agents, pressure is an indication of agent quantity. If a container shows a loss of agent quantity or a loss of pressure (adjusted for temperature) of more than 5 %, it shall be refilled or replaced. Therefore, at a standards level it is known that gaseous systems can become ineffective through accidental discharge and leakage and thus they do not serve to protect the critical infrastructure in such a case. To know the contents, you need to monitor it, and checking it every 6 months is not monitoring it.

 Should we not just constantly monitor all of them and be in full compliance to the regulations and the risks that are so clearly described in our own core standards? If it is known and accepted that these are dynamic systems that are prone to leaking, but they are expected to deliver resilience and protection, then why are they left unattended for 6 months of the year? We would not do the same to an alarm system without monitoring it 24/7, so why are we not monitoring gaseous extinguishing systems? Let us apply 21st century science to a 100 year old issue and be done with it. A dynamic system needs monitoring. The neglect of continuous monitoring of the fundamental protection provided by the gaseous extinguishing systems is to the peril of the lives of occupants of the premises and at the risk of crippling financial loss to the facility comprising the critical infrastructure. To ensure that dynamic gaseous systems are protecting critical infrastructure in a safe and diligent manner, 6 monthly monitoring and maintenance is no longer enough. There is a call for continuous monitoring and this is something that cannot wait any more.

Get to Know Coltraco Ultrasonics

Coltraco Ultrasonics design and make ultrasonic equipment for monitoring. We want to save you cost and time, whilst helping you improve safety.

This equipment is for:

You deserve 24/7 care. You will get lifetime support. Each unit comes with 3 year warranty on main units and 1 year warranty on sensors. Arrange a phone call at a time that suits you.

Faster: our ultrasonic technology is designed to be the simplest, most effective method to inspect quickly

Better: we are committed to integrity from design, manufacture, supply and after sales support. We are world-leaders.

Cheaper: We offer cost effective solutions. We will never be beaten on price. Send us competitor quotes and we will match or beat them.

Turn Risk To Reward : know your upfront costs + maintenance costs = lifecycle cost

We know that the most important factor for our customers is to minimise risk. In fast paced businesses, downtime can be costly, financially, reputationally, and for the maintenance of safety practices. For safety critical environments, we understand that it is essential that the equipment used to improve protection must be fully operational at all times. So, take the chance to transfer the maintenance risk of your new Coltraco Ultrasonics equipment back to the original manufacturer with the Portacare® package

What is Portacare® ?

  • Portacare® is a total care package that provides enhanced after sales support
  • It goes above and beyond Coltraco’s Customer Care Commitment (CCC)
  • It offers a world leading support programme to our products over a 5 year term length. Coltraco Ultrasonics operates with integrity - from design to after sales care - to best support customers and provide enhanced after sales support. 

What is the CCC?

  • Customer – we invite you to benefit from Coltraco’s ethos of integrity from design to lifetime support
  • Care – we think care is better if its personal so you can arrange a phone call any time that suits you worldwide to answer your queries
  • Commitment – we want to save you cost and time, whilst helping you improve safety.

How can you cut risk with the Portacare® Package?

Know your upfront unit cost plus maintenance cost when buying new equipment. The package includes:

  • Fixed costs for 5 years – All calibration costs within the first 5 year period (total of 4) – saving £250/year
  • Free replacement – If a component becomes obsolete, you receive a free replacement unit of similar life
  • Free repair – First line repair is free – saving £100 (repairs over £100 must be paid for. Please note that Portacare® excludes customer-induced damage). After the first repair, 25% discount is given on any further repairs and accessories. Priority assistance will be given in spares and repairs
  • Upgrades – Upgrades are available at 25% discount – transfer existing Portacare® to the new unit so no loss of fee.
  • Discounts – 25% discount on upgrade options, 10% discount of a second product and exclusive offers personalised to you
  • Flexibility – Coltraco understand that every companies requirements are different, and are pleased to tailor a Portacare® package to your needs

==

Keen to learn more about the Portacare®? Email This email address is being protected from spambots. You need JavaScript enabled to view it. for pricing, the brochure and frequently asked questions.

Portacare® is designed for customers using liquid level testing, seal integrity and condition monitoring equipment for in high value applications such as power plants, data centres and naval vessels.  Coltraco Ultrasonics is a leading British designer and manufacturer of innovative ultrasonic technology operating in 109 countries across multiple markets such as the offshore, marine, fire, renewable markets, for over 30 years. www.coltraco.com/news.

Know Your Numbers: Mathematics of Gaseous Extinguishing Systems

By starting with the numbers and mathematics of gaseous extinguishing systems, Coltraco are leading the way in the fire industry.

31˚C - CO2’s critical point: the temperature at which CO2 turns totally from liquid to gas.

CO2 is permanently under 720 psi or 49 bar of pressure ie nearly 50 times atmospheric pressure (by comparison a cup of water at sea level exists at 1 bar or 14.5 psi). Its state changes under increased temperatures to one that is neither a liquid nor a gas.

50-55˚C   -  critical points of FM-200® and Novec™1230 (turning from liquid to gas).

Gases under pressure are often effectively considered by the industry as single and passive cylinder columns of solid material from the perspective of their monitoring following installation. Whereas being under pressure and constantly changing under temperature they should be considered as active and dynamic systems requiring constant monitoring. These are not passive systems therefore; they are dynamic ones, and all dynamic systems under pressure need constant monitoring.

14520 - the ISO standard regarding fire systems from installation with regard to room integrity through to maintenance and inspection of contents

ISO 14520-1:2015(E) specifically states in 6.2.4.2 Contents Indication that - Means shall be provided to indicate that each container is correctly charged and in 9.2.1.1 At least annually, or more frequently as required by the authority, all systems shall be thoroughly inspected and tested for proper operation by competent personnel. Under ISO 14520 where gaseous extinguishing systems have to be designed in relation to the discharging agent hold-time (if the room cannot hold the agent because of leaks the agent will disperse and not extinguish the fire) and discharging agent peak pressure (if the pressure is too high for partition walls or suspended ceilings they will be blown apart or damaged and possibly destroying the room integrity). At the design stage of a fire extinguishing system rooms are tested for room integrity by positively pressurising a room and detecting escaping pressure to verify that the room itself into which the gaseous extinguishant discharges on actuation can both hold the agent after its discharge and hold its pressure on actuation. The fire system is then installed and commissioned. However,  over the next 10 years no further tests are made on room integrity and the cylinders merely hydrostatically tested to ensure they can cope with their design pressure limits. How can one be sure therefore that on actuation the room will hold the discharged agent to extinguish the fire and its partitions and ceilings are capable of withstanding the pressure of the agent on discharge?

5% - loss of agent above which it is deemed unacceptable in liquefied gaseous extinguishing system and thus requires refilling. 10% - loss of pressure above which it is deemed unacceptable in liquefied gaseous extinguishing systems and thus requires refilling

The risks of accidental discharge or leakage is recognised within the regulations.  BS EN ISO 14520 -1:2015(E) reasonably assumes that the execution of its provisions is entrusted to people qualified and experienced in the specification, design, installation, commissioning, testing, approval, inspection, operation and maintenance of systems and equipment, and who can be expected to exercise a duty of care to avoid unnecessary release of extinguishant. The assumptions in the installation, commissioning and maintenance of gaseous extinguishing systems is that they are highly pressurised but risk leaking and discharging. The regulations that sensibly underpin this assumption aim to identify their leak identification at an interval of every 6 months. Cylinders accidentally discharge. CO2 can cause fatalities if it does. 1% of pressure gauges fail and 25% of valves too. Essentially, it is known in regulations that the gaseous systems leak and need to be maintained. Given that the ultrasonic gaseous systems are designed specifically to the individual need of that room, building e.t.c, then a 5% loss of agent may mean that they would not fully extinguish the fire. What if there are also leak sites in the room? The likelihood of the gaseous system effectively extinguishing the fire gets lower and lower.

Case Studies: Ultrasonics in the Mining Industry

The importance of ultrasonic technology to the mining industry has been demonstrated by its use thus far. NRG Energy have been using the Portalevel Max since 2015 at the Morgan Town Generation Plant in Morgantown, Charles County in Maryland, US. The Morgan Town Plant is a coal powered power station based in Maryland. NRG own the USA’s largest and more diverse power generation competitive portfolio. NRG are dedicated to smart and reliable energy sourcing, and emission reductions although coal is a significant part of the electricity generation. The Portalevel Max is an example of the technologically advanced techniques that the company are implementing to lead the way in safe and sustainable coal sourcing.   After witnessing fire service experts undertaking ultrasonic liquid level indication in just minutes, they were keen to change from their previous method of weighing. As a safety critical asset, the Morgan Town Plant saw the necessity in investing into their fire safety. This was the same as at the Vales Point Power Station at Delta, Australia.  The power station is at the southern end of lake Macquarie. This power station was built in the 1960’s as a four-unit station, but now operates two 660 MW generating units. The Power Station is owned and operated by Power International, with the capacity of around 1,320 megawatts, providing 24 hours electricity. In 2013 they bought a Portaguage for testing normal structure and stainless steel.

ACT NOW: Nuclear Power Plants Are Safety Critical

Continuous improvements and maintenance are required of the fire safety systems at nuclear power plants due to the safety critical nature of the site.  Incidents in nuclear power plants around the world have continued to demonstrate the vulnerability of safety systems to fire and its effects. The potential danger from an accident at a nuclear power plant is exposure to radiation to the people in the vicinity of the plume from the cloud and particles deposited on the ground, inhalation of radioactive materials and ingestion of radioactive materials. It is for this reason that the safety demands of the Atomic Energy Authority must be met.

The International Atomic Energy Authority state clearly in the Fire Safety in the Operation of Nuclear Power Plants standards that the effects of a single failure in fire safety systems, such as a system not performing its required function, can be detrimental. One example of this is the Chernobyl disaster a catastrophic nuclear accident which cost approximately 18 billion roubles and had a huge human impact. In this disaster a  combination of inherent reactor design flaws, together with the reactor operators arranging the core in a manner contrary to the checklist for the test, eventually resulted in uncontrolled reaction conditions that flashed water into steam generating a destructive steam explosion and a subsequent open-air graphite fire.  This fire produced considerable updrafts for about 9 days, that lofted plumes of fission products into the atmosphere, with the estimated radioactive inventory that was released during this very hot fire phase, approximately equal in magnitude to the airborne fission products released in the initial destructive explosion. Over thirty years later and investment into the site is still required, with Flamgard Calidair providing fire shut off dampers to the Chernobyl, as part of an €1.5 billion multinational engineering project. With fires at nuclear power plants still occurring, such as the 2017 power plant explosion at Flamanville, deemed “very serious” by industry experts, the call for advanced technology is of most importance. A significant technical issue led to a blast in the turbine hall in the unit, although there was no radioactive leak, a thorough investigation is being conducted into the concerning event.

Faced with this problem, a leading UK Nuclear family approached Coltraco Ultrasonics in 2003 and commissioned the first Permalevel™. Focused on continued advancement of safety technology, Coltraco have now developed the Permalevel™ Multiplex, a fixed fire suppression monitoring device, designed for permanent contents verification. The Permalevel  Multiplex™    is  designed  to  ensure  that fire  suppression  systems  are  always  fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event of a fire at a nuclear power plant. The application of the Permalevel™ reaches further, with customers using this equipment in alternate specialist and confidential manners to ensure safety in the station. With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an interruptible power supply and remote real-time monitoring, the Permalevel offers the efficiency that is now a requirement at nuclear energy sites.

A CALL FOR CONSTANT MONITORING OF WIND TURBINES

A dynamic system needs monitoring.  The reality is that gaseous systems are checked for contents annually because they are pressurised and anything that is dynamic offers risk of loss of contents, but this fails to deal with the probability of discharge or leakage for the 364 days per annum in the interim between certification checks.

If the hazard is special and the infrastructure critical then this is the case for the constant monitoring of the suppression systems that aim to deliver the protection of them. Inspection should include an evaluation that the extinguishing system continues to provide adequate protection for the risk.

Coupled to this is a complete lack Room Integrity testing after the gaseous system has been installed. As buildings age or their internal use is changed leak sites develop. If the gas cannot be ‘held’ in the room on discharge during a fire event the probability of its suppression diminishes in direct proportion to the size of the leak sites.  Room integrity tests are imperative for the determination of both the hold time and the peak pressure needed for successful fire suppression.

The level of leakage is carefully monitored in order to ensure the correct agent concentration is achieved; room integrity must be ‘tight’ enough to ensure sufficient retention time according to NFPA Standards or ISO 14520, yet remain ‘loose’ enough to prevent enclosure damage at discharge.  The presence of undesired and unregulated leak sites reduces room integrity and will hence dramatically impact the hold time and peak pressure, placing room contents and potentially wall structures at risk.

It is accepted that in wind turbines vibration can loosen connections while dirt, dust, and temperature extremes are known to cause unwarranted discharge. Additionally, openings in the turbine housing significantly inhibit achieving the designated agent concentration. Devising a solution to overcome these challenges can add significantly to the weight in the turbine.

For regular inspection, there are solutions such as the Portalevel® MAX. This handheld ultrasonic liquid level indicator can service a cylinder in 30 seconds (in contrast to 15 minutes by traditional manual weighing) with accuracy of up to 1.5mm off the true liquid level.

Coltraco Ultrasonics provide smart Firetest® solutions that enable wind turbine owners and operators to improve their fire safety management and reduce the risks to human life, business continuity caused by any downtime and thus minimise risk to reputation by delivering a Safesite®.

Fires Cause Turbine Failure

Fires Cause Turbine Failure Turbine fires are expensive. They attract negative publicity. It is estimated that 0.3-0.5 fire incidents occur per 1000 wind power stations (onshore and offshore) every year (Technical Research Institute of Sweden). What it more, wind turbine fires tend to cause losses equal to or above the original cost of the wind power plant - especially offshore!

WHAT ARE THE RISKS?

Introducing fixed fire extinguishing systems as fire protection is becoming more prevalent because of the increased rate of fire incidents and the rising value and sizes of turbines. While there have been occasional articles written over the last couple of years about the importance of wind energy and the problems of fire, they have not addressed how fire systems themselves can be constantly monitored to ensure operational efficacy and to reduce risk, saving costs and increasing revenues.

Potential ignition sources are mainly inside the nacelle where there is fast moving machinery (generators, gearboxes e.t.c) which creates heat and combustible oil and solid material in the. Even with the incredible engineering and safety measures in place, a fire can ignite and develop, leading to the possible complete destruction of the turbine. A study conducted by SP Safety at the Technical Research Institute of Sweden showed that 10-30% of all loss-of-power-generation incidents in wind power plants are due to fire.

CRITICAL TURBINE INCIDENTS

The fires in wind turbines not only lead to a loss of business continuity and a negative impact on the company’s reputation but also, most importantly, are a critical safety issue. Possibly harmful debris can be drifted by the wind in the event if a fire and there is also a significant risk to human lives. When turbines are under erection, commissioning maintenance and repair, escape routes for operators are often long and vertical. Three out of six incidents involve a human presence in the nacelle; hence, a fire becomes a safety concern. In 2013, a crew of four engineers died in Ooltgensplaat, Netherlands in a wind turbine fire. This devastating loss of life calls for improved review of fire safety to minimise the risk to engineers.

Daniel Kopte, expert for safety systems, renewables certification at DNV GL, estimates that worldwide 120 wind turbines suffer fire damage (not necessarily causing total loss) annually. There have been several high-profile cases on wind turbine fires in the UK within the previous 6 years. An 100-metre tall turbine caught fire during hurricane-force winds at Ardrossan in North Ayrshire in December 2011, reportedly due to a lightning strike. The wind turbine was completely burnt out and debris scattered over large distances due to the strong wind. With predictions of much taller and more powerful turbines of 13-15MW to be implemented by the middle of the next decade, and thus fewer per project, ensuring that the they are in working order is essential, because the larger and fewer the turbines, the more costly they will be to operators in the event of fire damage.

Protecting your crew: using ultrasonics to create a Safeship®

The NTSB (National Transportation Safety Board) have recently investigated the cause of the 2015 El Faro disaster. SS El Faro was a United States-flagged, combination roll-on/roll-off and lift-on/lift-off cargo ship crewed by U.S. merchant mariners. All 33 crew members tragically died in the sinking, when El Faro sailed from Jacksonville into Hurricane Joaquin, while heading to Puerto Rico. The wreckage was discovered more than 15,000 feet below the sea surface, Northeast of Acklins and Crooked Island, Bahamas. 

The NTSB have concluded that gaps in safety management contributed to the sinking of the El Faro. One of the significant issues was “poor watertight integrity which allowed seawater into the ship” stating that this accident may have been avoided if “crew had more information about the status of the hatches”.

In fact, in the SOLAS Reg II-1/11.1  it states that hatches and watertight seals must be regularly tested: “Where a hose test is not practicable [sic] it may be replaced by [sic] an ultrasonic leak test or an equivalent test. In any case a thorough inspection of the watertight bulkheads shall be carried out.” The tragedy of the El Faro has exemplified why it is crucial for the watertight tight integrity test of vessels to be regularly and easily tested by the crew. The importance of continually maintaining seal integrity must take a more prominent position in ship maintenance scheduling.

A lack of proper servicing of seals can lead to deterioration which endanger the lives of the crew, vessel and cargo.  One British manufacturer whose mission is to deliver the Safeship® to prevent El Faro type incidents occurring again is Coltraco Ultrasonics. They are committed to improving safety for people, assets and vessels at sea. They focus on benefitting the crew; designing innovative ultrasonic solutions which the crew will be happy to use by being easy to operate, quick, accurate and a better method to traditional techniques. Thus increasing the likelihood of tests being regularly conducted, in line with regulations and even going above and beyond for more frequent testing. By so doing, the crew will be creating a safer ship.

Ultrasonics is proven to be the quickest, easiest and most efficient method of testing watertight & weather-tight seals of hatch covers, doors, multiple cable transits. The Portascanner® WATERTIGHT is the most accurate model of its kind – proven to 0.06mm (+/-0.02mm). This is designed primarily to enhance the ease and accuracy with which critical watertight, airtight or weather tight seals can be inspected for leak sites or areas of reduced compression in the seal. The ultrasound generator emits a modulated signal of a specific frequency of ultrasound (in most cases 40,000Hz). The receiver then picks up the signal and converts it into a result indicating watertight integrity. The easy to use PortascannerÒ WATERTIGHT allows crew member to check for failing seals whilst at sea which allows for prompt maintenance. 

Avoid negligence and work towards creating the Safeship® with Coltraco Ultrasonics.

CASE STUDY: Corrosion in Metal Work

WHO? Vales Point Power Station

WHERE? Delta, Australia. The coal fired power station is at the southern end of lake Macquarie. This power station was built in the 1960’s as a four-unit station, but now operates two 660 MW generating units. The power station is owned and operated by Power International, with the capacity of around 1,320 megawatts, providing 24 hours of around the clock electricity.

WHAT? Corrosion in power plants leads to costly repairs, prolonged maintenance, material losses, poor performance and, if left untreated, failure. In power plants, corrosion is the primary factor leading to costly and critical downtimes. The water-steam circuits in fossil and nuclear power plants are inherently prone to corrosion, as metal components are constantly in contact with water. When corrosion affects systems carrying steam or hot water—such as pipes—material or welds may fail, causing bodily injury or death. Water, steel and dissolved oxygen within boiler units causes boiler tubes to oxidize and corrode. The corrosion forms grooves within the tubes that lead to cracks and boiler failures. Corrosion can account for up to 75 percent of a plant’s arrest time during maintenance and up to 54 percent of production costs.

HOW? To protect against the threat of corrosion, Vales Point Power Station bought a Portagauge® for testing normal structure and stainless steel, so that they could monitor corrosion rates. The Portagauge® 3 is a single-echo portable ultrasonic thickness gauge. The quick, simple and hardy Portagauge® 3 allows accuracy of ±0.1mm even on corroded, challenging and some plastic surfaces. With a 50 hour battery life, measuring thickness ranges between 1.5mm to 99.9mm and a variety of verified testing materials such as steel, quartz and glass PVC, the Portagauge® 3 provides the great amount versatility needed to suit a diversity of safety needs. The handheld highly dependable unit is ideal for a wide range of industrial applications such as fire cylinders, bulk heads, pipework, chemical equipment and oil storage tanks.

Shipping Needs To Embrace The Potential of Digitlisation

Standardisation is required in the shipping industry to allow for confidence in technology by operators. Common standards ensures consistency, which promotes safety and efficiency. Standardisation is key to streamline processes and in the exchange of data – when utilised this will allow the shipping industry to embrace the huge potential that digitalisation has to offer the shipping industry.

Shipping needs to adopt an approach such as the aerospace industry, which is affected by international cooperation and strongly controlled by national and international regulations and standards in order to ensure safety, reliability, and cost-efficiency. In the aerospace industry, the Federal Aviation Administration and European Aviation Safety Agency generate the regulations and the airlines and member state national civil aviation authorities, such as the UK Civil Aviation Authority and Maintenance, Repair and Overhaul services implement them. A failure to certify that they have been implemented will result in an aircraft not being certified to fly.

In shipping the International Maritime Organisation (IMO) generates many of the regulations and its member flag states, such as the UK’s Maritime and Coastgaurd Agency, are expected to implement them. Indeed, they are subject to interpretation by them. The single most useful thing that the UK could do for shipping globally is to lead at the IMO so that its regulations are implemented through standardisation.

Case Study:

Speaking in from the expertise of Coltraco Ultrasonics (in the monitoring of gaseous extinguishing systems), below is an example of how standardisation will allow the shipping industry to become safer and ensure the implementation of regulations.

The regulations that currently govern gaseous extinguishing systems are the IMO SOLAS Fire Safety Systems (FSS) Code and the BS EN ISO 14520 standards. These require that the liquefied gaseous cylinders be checked for an agent loss of more than 5%, at which point they should be refilled or replaced.

Standardisation means that the crew have a responsibility to implement the regulations via regular testing, which enabled through smart ultrasonic liquid level indicator technology and Internet of Things (IoT) IoT, should be done continuously to avoid negligence and unnecessary risk.

Smart technology provides the crew and ship owners with ease of inspection and understanding their extinguishing systems. However, the crew will not be able to refill the gaseous extinguishing system, and instead must rely on notifying the marine servicing company when they arrive at a port, despite the fact that they may only be at the port for a very short amount of time. Due to time pressures, the risk of not being able to find a contractor in time to fill the cylinders in the event of leakage is one that could jeopardise the safety of the entire ship when it is time to set sail.

Continuously monitoring the cylinders with ultrasonic sensors that utilises IoT can avoid this, because the network contribution. Using IoT enables the advance notification of the crew and shore based services whilst at sea. Therefore, preparations to address the issues can be made prior to docking to ensure the issues are resolved given the minimum time they have.

Although the implementation of the IMO SOLAS FSS and ISO 14520 codes with continuous monitoring and IoT could drive up costs of purchasing and installation, the long-term savings and benefits far outweighs the initial cost.

But for this to work seamlessly, there must be a standardisation so that the data that is received by shore-based operators from the vessel, is understood and actioned upon as per the IMO regulations. As shown by a new paper from DNV GL standardisation can enable the effective collection, storage, exchange, analysis and use of data, while contributing to improved data quality and sensor reliability in the maritime industry.

Test Your CO2 Systems Safely

At sea, fire pose one the of biggest threat to ships. Sailing alone and at sea throughout the year, and without the ability to call upon the emergency services as a land-based asset might. As vessels become larger and more sophisticated, a greater financial interest is tied up into one ship, meaning that the risks are magnified if the vessel would get into difficulties e.g. a fire.

Misunderstanding exists across parts of Shipping regarding the application of a part of the International Maritime Organisation, Safety of Life at Sea, Fire Safety Systems (IMO SOLAS FSS) Code; the need for crew to test the contents of their CO2, FM-200® & NOVEC™ 1230 Gaseous Extinguishing Systems in between the periodic inspection, maintenance and certification intervals. These periodic inspections are conducted annually or biennially, and only by an Accredited Service Agent i.e. an external Marine Servicing Company. As stated above, the reason the IMO requires crew to test for contents in-between these is that the “ship sails alone”; it must act as its own emergency fire service

A ship’s gaseous extinguishing system typically comprises between 200 and 600 cylinders each containing 45KG of CO2 under high 720 psi/ 49 bar pressure. (Other suppressant clean agents such as FM-200® and Novec™1230 are becoming more widely used.) One of the highest probabilities of discharge occurs during their maintenance. Some marine service companies estimate that 20% of a ship’s CO2 cylinders have discharged or partially leaked their contents at some point in their lifetime. Taking CO2 systems through as an example, although random checks may be suitable in some sectors, it is worth remembering that because the normal design concentration of CO2 of 34-72 v/v % is above the nearly immediate acute lethality level, these systems have an extremely narrow safety margin. As these systems work through oxygen dilution rather than the chemical disruption of the catalytic combustion chain (which is the case with other clean agents), insufficient oxygen levels during an accidental discharge may allow a situation to spiral out of hand. Yet although this poses high levels of risk to the service companies and the crew, because gaseous extinguishing systems are highly pressurised, the risk of leaking and discharging is accepted as part of their use and this is shown in the regulations that demand their upkeep e.g. IMO SOLAS FSS Ch5. 2.1.1.3:

“Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the container”

Often this is misunderstood, this code specifically states that the crew must test their extinguishing installations in between the periodic inspection, maintenance and certification. Only having the annual inspection by accredited marine servicing companies is not enough – the crew must take responsibility for its own fire protection.  However, what must be noted is that the crew are often not trained or certified to shut-down, dismantle, weigh and re-install the gaseous cylinders – the traditional method.

Using an ultrasonic liquid level indicator is the only way that the crew can safely test their CO2 without disturbing them. If marine companies implemented the IMO SOLAS FSS codes by testing safely and quickly (just 30-60 seconds per cylinder) by using liquid level indicators and marine servicing companies were able to do their work without allowing for time pressures, then marine safety would be far safer.

Bad industry practice is unacceptable when fire risk may have catastrophic results due to risk to life, downtime in operation due to ship safety and repair work and incalculable reputational damage. The crew, cargo and vessel must be protected when at sea because it is it’s own fire brigade without accessibility to typical emergency services. This is a call to respond to regulations with a rigorous attitude, to go above and beyond, to provide security of life and infrastructure

Feedback From Customer – Monitor Your Gaseous Systems

For the years I have worked with Gaseous Suppression systems, I have found it , like many others it frustration when thousands of dollars is spent on the installation of these systems, but the service Technician has a daunting task trying to determine weights and or liquid levels due to the lack of foresight of those installing the system to provide a safe means of gathering this required information.

This device (the Portalevel® MAX), appears to provide a fast and efficient way of carrying out this task preventing the possibility of an unsafe act or worse still an incorrect or false listing of weights and measures.”

What is the unit?

The Portalevel® MAX ultrasonic liquid level indicator

  • BETTER – most accurate unit on the market, +/- 1.5mm
  • FASTER - combined with the MAX, the Portasteele® CALCULATOR is an advanced app, that converts the liquid level of C02, NOVEC™ 1230 and FM-200®into the agent weight/mass
  • CHEAPER - testing safely and quickly (just 30 seconds per cylinder).

See the unit here.

Case Study: Oxygen Reduction System - Data Centre, England 2018

Oxygen Reduction System and Need for Monitoring: Oxygen Reduction system works by taking Nitrogen from the air outdoors and pumping this into the room consistently in order to suppress oxygen levels, down to the level where combustion can no longer occur. To ensure the system works safely and efficiently, room integrity is of utmost important for two reasons: (1) A properly sealed room will contain the Nitrogen for a longer period of time, therefore putting less work on the air compressor in order to save energy. (2) If Nitrogen starts to leak from the Server Room, there are safety concerns over where this Nitrogen would leak to as it has the potential to harm occupants in other rooms if the Nitrogen leaks into their room and the oxygen levels were unmonitored.

Testing of the Server Room: The Server Room had an area of about 91 metres square. Several areas were tested with an ultrasonic room integrity tester where leakage was probable and the readings were noted on the drawings. These were the doors, vents, cable penetrations and also sections of the wall where gaps were visible.

Results: The ultrasonic room integrity tester identified the main source of leaks for the room, the doors, where full readings were clearly detected. Multiple air vents in the room were also improperly sealed and some leakage was found into the external room. Cable penetrations leading to the area outside the Server Room were also found to be leaking. 

Conclusions: Once the required maintenance was conducted and assuming no changes were made to the room, it is safe to assume that the room retains its integrity, thus comply and exceed current ISO 14520 regulations requiring periodic inspections of room integrity whereby visual inspection is usually specified and is not sufficient. The most suitable way to address periodic inspections is through the use of ultrasound.

The Main Cause of Vessel Loss is Sinking

As the main cause of vessel loss is sinking, the maintenance, testing and monitoring of watertight hatches, doors and multiple cable transits on vessels is essential. A watertight hatch cover is designed to prevent the passage of water in either direction under a head of water for which the surrounding structure is designed.  Many mariners may think hatches are robust, monolithic structures, thereby failing to appreciate the small tolerances on panel alignment and gasket compression. It is better to think of hatches as complex, finely-made structures, to be handled with care.

SOLAS Reg II-1/11.1  it states that hatches and watertight seals must be regularly tested: “Where a hose test is not practicable [sic] it may be replaced by [sic] an ultrasonic leak test or an equivalent test. In any case a thorough inspection of the watertight bulkheads shall be carried out.” The tragedy of the El Faro has exemplified why it is crucial for the watertight integrity test of vessels to be regularly and easily tested by the crew. The importance of continually maintaining seal integrity must take a more prominent position in ship maintenance scheduling.

Ultrasonics is proven to be the quickest, easiest and most efficient method of testing watertight & weather-tight seals of hatch-covers, doors, multiple cable transits. The Portascanner® WATERTIGHT is the most accurate model of its kind – proven to 0.06mm (+/-0.02mm). This is designed primarily to enhance the ease and accuracy with which critical watertight, airtight or weather tight seals can be inspected for leak sites or areas of reduced compression in the seal. The ultrasound generator emits a modulated signal of a specific frequency of ultrasound (in most cases 40,000Hz). The receiver then picks up the signal and converts it into a result indicating watertight integrity testing. The easy to use Portascanner® WATERTIGHT allows crew member to check for failing seals whilst at sea which allows for prompt maintenance.  

Leading British Ultrasonics Technology Manufacturer

Coltraco Ultrasonics are a leading British Ultrasonics Technology Manufacturer.

Coltraco Ultrasonics strive towards creating innovative, reliable and effective technology to provide a level of safety that goes beyond minimal compliance of regulations for true safety – this is the Safeship® initiative at sea, and Safesite® initiative on land. This is supported by lifetime after sales customer care. Coltraco Ultrasonics are proud exporters, with 89% of export output going to 109 countries: 40% to Asia, 10% to the Middle East, 15% to Europe, 17% to North America and the balance to South America and Africa. At Coltraco’s core is exporting and is a consequence of the global appeal of its high-end science and technology R&D and manufacturing capability in the UK.

Coltraco Ultrasonics operate in multiple market sectors: Shipping, Fire, Naval, Offshore, Power Generation, Electricity Distribution, Data Centres, Banks, Telecommunications, Marine Surveying, Rail, Mining, Pharmaceuticals and Food Processing and most recently in Renewable Wind Energy. Today, Coltraco are aboard 17% of the world’s shipping fleet (nearly 10,000 ships), the top 15 Navies and sell to 50% of the world’s offshore oil and gas companies, and in the last year, in service with one of the major 4 wind companies.

Coltraco Ultrasonic’s expertise is focused upon 3 core technology strands which are “cheaper, faster and better” and their support:

  1. Liquid level indication: Specifically inspecting fire extinguishing systemsprimarily pressurised liquefied gaseous ones as well as sprinklers, by a flagship UL and ABS approved Portalevel®MAX range of products and our unique fixed monitoring system, Permalevel® and a whole range of other industrial liquids in cylinders and tanks.
  2. Seal integrity: Watertight integrity of marine structures such as hatch covers tester, multiple cable transit areas, operational citadels and watertight compartment doors with ABS Type-approved Portascanner®Watertight and compartmentation testing in buildings and civil engineering structures to supplement Door Fan Testing with Portascanner® 520.
  3. Condition monitoring: Through bearing monitoring, thickness gauging and flow monitoring.
  4. After Sales: Support for the lifetime of customer equipment, recommended annual calibration at our authorised Organisational Delegated Authorities (ODA) service centres and optional Portacare® total care programme.

Carnival Cruise improve safety with Portalevel® MAX Marine for inspecting Fire Extinguishing Systems

Carnival is the largest Cruise fleet in the world, with well over 100 vessels, making up 21% of the global cruse market independently. Recently Carnical explored how to enhance their onboard fire safety practises, after a number of onboard events and in doing so, turned to Coltraco Ultrasonics. 

Addressing these two main causes of vessel loss, sinking and fire are critical, especially when all owners and managers are seeking to reduce risk, cut costs and surge on safety. Carnival Cruises chose to protect their fleet by improving fire safety. Carnival, instigated a cross fleet exploration to ensure they could protect their passengers, crew and cruise ships against the risk of incidents. This very comprehensive program covered numerous aspects of equipment, crew training, processes and technical improvements. A key element of this program was improving the onboard ability to inspect their key fire suppression systems. Here, Carnival turned to Coltraco Ultrasonics.

Coltraco’s USA Marine Sales Partner and Organisation Delegated Authority (ODA) Service Partner Lea Machine had been working with Carnival through both their US & Norwegian offices for many years. Lea Machine is a family company, like Coltraco Ultrasonics, with whom Coltraco have worked with  previously together approached Carnival to present smart ultrasonic technology. The Portalevel® MAX Marine was selected as the preferable technology platform for Carnival to be using. This is a handheld ultrasonic liquid level indicator, in the anticipation that Carnival would require the means to test their onboard fire extinguishing systems.

Carnival has a fleet of well over 100 vessels, accounts for 21% of the worldwide cruise market with vessels each varying in size from 70,000 to 120,000 dwt.

Onboard all Cruise, Cargo & Defence vessels one will find fixed fire suppression systems which guard the key machinery spaces onboard. Their core purpose is to protect both the vessel and life onboard. In the event of any fire in key machinery spaces, the fire systems will discharge into the specific areas, extinguish the fires and ensure the continued safety of people and protect serious damage to the machinery.

Carnival are committed to ensuring safety onboard and one aspect of this is maintaining their vessels’ onboard fixed CO2 & marine CO2 systems. It is known that the CO2 contents in the cylinders can leak which is why there are IMO SOLAS FSS Code regulations (2.1.1.3) which require all vessels to have the means for the crew to test the agent contents onboard. The handheld ultrasonic liquid level indicator Portalevel® MAX Marine, which is ABS, RINA and UL approved, is an ideal solution for the crew to easily and quickly identify the liquid level of agent. This can improve the safety for crew, passenger and vessel. Over 2 years, Lea Machine engaged in close discussions with Carnival to educate the team about the benefits of improved safety and maintenance, and specifically the advantages of teaming with Coltraco via Portalevel® MAX Marine. This close relationship coincided with decisions within Carnival to upgrade all of their fire fighting equipment across the fleet.

Cost is an ever-present challenge especially in shipping, but was resolved by Carnival’s desire to confirm a fleet wide contract. Carnival wanted to guarantee they received technical and after sales support which they were reassured to receive locally via Lea Machine.

It is with pleasure that by working closely with our USA Marine Sales Partner and ODA - Lea Machine Services Inc. - we won the contract to supply UL-listed & ABS-approved Portalevel® MAX Marine to the Carnival Cruise Fleet of 25 Cruise vessels. We are grateful to Mr Toralf Lea and Mr William Jones of Lea Machine for supporting this contract. We are proud to supply this significant order and to have enjoyed a 25 year relationship with Lea Machine’s sister company Alf Lea in Norway.

ABS reports CO2 Systems Leak: Time To Conduct Your Risk Assessments

ABS have reported multiple cases in which CO2 cylinders in fixed fire systems were found empty and thus would not be able to suppress a fire event. ABS have hence recommended that all shipowners need to conduct a risk assessment of their CO2 systems.

As per the Ministero delle Infrastrutture e dei Trasporti: “In considerazione delle necessità di assicurare la continua funzionalità del richiamato sistema antincendio di tipo fisso e di prevenire un inatteso rilascio di CO2 nell’ambiente di lavoro, si dispone che  - codeste Società eseguano, per le unità gestite che risultano dotate del predetto impianto, una specifica e documentata valutazione del rischio, tesa a delineare eventuali, necessari interventi per la tutela della sicurezza e della salute dei lavoratori..”

  

Why do CO2 fire system cylinders leak?

  • Approximately 20% of a ship’s CO2 cylinders may have discharged or partially leaked
  • If the contents are not there, they will not extinguish in a fire event
  • A ship’s gaseous extinguishing system typically comprises between 200 and 600 cylinders each containing 45KG of CO2 under high 720 psi/ 49 bar pressure
  • The risk of leaking and discharging is accepted as part of their use because gaseous extinguishing systems are highly pressurised
  • This is shown in IMO SOLAS & FSS Code Chapter 2.1.1.3 - “Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the containers.”

What is the solution?

ABS Type Approved Portalevel® MAX Marine ultrasonic liquid level indicator

  • BETTER – most accurate unit on the market +/- 1.5mm & safer as no need to turn off the system or dismantle the cylinders
  • FASTER - combined with the MAX Marine, the Portasteele® CALCULATOR is an advanced app, that converts the liquid level of C02 into the agent weight/mass
  • CHEAPER – just one person needed to test safely and quickly (just 30 seconds per cylinder)

Comply with IMO SOLAS & FSS Codes

Fires on board ferries can be devastating, to crew, vessel and cargo. There is a call to respond to regulations with a rigorous attitude, to go above and beyond, to provide security of life and infrastructure

Misunderstanding exists across parts of the ferry industry regarding the application of a part of the International Maritime Organisation, Safety of Life at Sea, Fire Safety Systems (IMO SOLAS FSS) Code; the need for crew to test the contents of their CO2, FM 200 fire suppression system® & NOVEC™ 1230 Gaseous Extinguishing Systems in between the periodic inspection, maintenance and certification intervals.

IMO SOLAS & FSS Code Chapter 2.1.1.3 - “Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the containers.”

The reason the IMO requires crew to test for contents in-between these is that the “ferries sails alone”; it must act as its own emergency fire service. 

A ferries’s gaseous extinguishing system typically comprises between 200 and 600 cylinders each containing 45KG of CO2 under high 720 psi/ 49 bar pressure. Some marine service companies estimate that 20% of a ferries CO2 cylinders have discharged or partially leaked their contents at some point in their lifetime. Yet although this poses high levels of risk to the service companies and the crew, because gaseous extinguishing systems are highly pressurised, the risk of leaking and discharging is accepted as part of their use and this is shown in the regulations that demand their upkeep.

Using an ultrasonic liquid level indicator is the only way that the crew can safely test their CO2 & marine CO2 systems without disturbing them. If ferry companies implemented the IMO SOLAS FSS codes by testing safely and quickly (just 30-60 seconds per cylinder) by using liquid level indicators and marine servicing companies were able to do their work without allowing for time pressures, then marine safety would be far safer.

Any vessel with a Marine Gaseous Extinguishing system needs to consider 3 factors :

  • Unless compartmentation exists the gas will not be able to concentrate
  • Unless the contents exists in sufficient quantity design concentration will not occur
  • The pipework and flanges must be tested to be free of corrosion-generated particulates which block the nozzles and must be tested to be able to withstand the shock of gas discharge on actuation

“Safely check the quantity of the fire extinguishing medium in the containers.”

Sailing alone and at sea throughout the year, and without the ability to call upon the emergency services as a land-based asset might. This is recognised with marine insurers and especially with the International Union of Marine Insurance (IUMI): “Fire protection on board is not unlike fire protection in buildings: If a fire breaks out and is not quickly brought under control, all that is left is a ruined shell, fit only for the wrecking ball. In turn, in the case of ships, a total write-off. To better protect the cargo on container ships, with a value running into many millions, it makes sense to modernize the on-board facilities for containing and extinguishing fires.”

As vessels become larger and more sophisticated, a greater financial interest is tied up into one ship, meaning that the risks are magnified if the vessel would get into difficulties e.g. a fire. From a marine insurer's perspective, it is a simple equation: the larger the vessel, the more cargo it will carry, and hence the greater the sum insured.

Posed threat of loss of crew, vessel and the cargo guidance by the German Insurance Associations has set out an ‘improved concept’ for firefighting facilities on container ships. Vice Chair of the IUMI Loss Prevention Committee, Uwe-Peter Schieder, explained: “We believe a new technical solution is needed to improve current firefighting practice on container vessels, particularly as these ships are continuing to grow in size

The regulations that currently govern gaseous extinguishing systems are the IMO SOLAS Fire Safety Systems (FSS) Code and the BS EN ISO 14520 standards.

IMO SOLAS & FSS Code Chapter 2.1.1.3 - “Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the containers.”

Coltraco Ultrasonics is aware of that there is failure to fully implement the regulations. Coltraco supply Marine Servicing companies globally share anecdotes - that at any one time the average merchant vessel in non-UK port visits has over 20% of its CO2 cylinders empty on inspection plus another 10-20% which have contents loss and also know that occasionally marine “servicing companies” unintentionally leave it disabled.

THE SOLUTION?

Using an ultrasonic liquid level indicator is the only way that the crew can safely test their CO2 without disturbing them. Coltraco Ultrasonics designed the Portalevel® MAX Marine & Portamarine® ultrasonic liquid level indicator, as radioactive units were being phased out. If shipping companies implemented the IMO SOLAS FSS codes by testing safely and quickly (just 30-60 seconds per cylinder) by using liquid level indicators and marine servicing companies were able to do their work without allowing for time pressures, then marine safety would be far safer.

What are gaseous extinguishing systems and why do they leak?

Gaseous extinguishing systems protect urgently important infrastructure against special hazards, fundamental for the safeguarding of critical facilities. However, gaseous extinguishing systems leak because they are active and dynamic systems and this threatens the consistent and reliable safety that they should offer to the space that they protect.

In fact, in the regulation ISO 14520, which is the “gold standard” of fire suppression systems, it is clearly stated that gaseous systems leak and need to be periodically checked to counter this issue:

9.2.1.3  - “if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure of more than 10 %, it shall be refilled or replaced.”

Given that gaseous systems are designed specifically for a protected space or room e.g. one aluminium foundry factory floor, a 5% loss of extinguishing agent may mean that the system would not fully extinguish the fire.

Technology now exists to improve the reliability of fire suppression systems that affects the safety of all who occupies the building it protects in an event of fire.

To  ensure  that fire  suppression  systems  are  always   full and that no accidental discharge or leakage has occurred, Coltraco Ultrasonics have developed an ultrasonic liquid level indicator, the Portalevel ® MAX and  the constant monitoring system the Permalevel ® MULTIPLEX. By testing and monitoring fire extinguishing systems for leaking, facilities managers and factory owners are able to exceed  standards and ensure that the gaseous extinguishing systems are able to extinguish in the event of the fire.

The easy to use Portalevel® MAX uses ultrasonic technology to pinpoint the liquid level of suppressant agent in the cylinders of the extinguishing system which makes testing is quicker and easier. Liquid level identification takes just 30 seconds, needing only one person. Combined with the Portalevel® MAX, the Portasteele® Calculating fire suppression agent weight is an advanced calculator application, that converts the liquid level height of C02, NOVEC™ 1230 and FM-200® liquefied gaseous extinguishant agent readings taken on an ultrasonic non-destructive liquid level indicator device into the agent weight/mass.  Furthermore, the Portasteele® CALCULATOR can convert an expected agent weight back to the required liquid level allowing users to anticipate where the level should be.

ACT NOW: Nuclear Power Plants Are Safety Critical

Continuous improvements and maintenance are required of the fire safety systems at nuclear power plants due to the safety critical nature of the site.  Incidents in nuclear power plants around the world have continued to demonstrate the vulnerability of safety systems to fire and its effects. The potential danger from an accident at a nuclear power plant is exposure to radiation to the people in the vicinity of the plume from the cloud and particles deposited on the ground, inhalation of radioactive materials and ingestion of radioactive materials. It is for this reason that the safety demands of the Atomic Energy Authority must be met.

The International Atomic Energy Authority state clearly in the Fire Safety in the Operation of Nuclear Power Plants standards that the effects of a single failure in fire safety systems, such as a system not performing its required function, can be detrimental. One example of this is the Chernobyl disaster a catastrophic nuclear accident which cost approximately 18 billion roubles and had a huge human impact. In this disaster a  combination of inherent reactor design flaws, together with the reactor operators arranging the core in a manner contrary to the checklist for the test, eventually resulted in uncontrolled reaction conditions that flashed water into steam generating a destructive steam explosion and a subsequent open-air graphite fire.  This fire produced considerable updrafts for about 9 days, that lofted plumes of fission products into the atmosphere, with the estimated radioactive inventory that was released during this very hot fire phase, approximately equal in magnitude to the airborne fission products released in the initial destructive explosion. Over thirty years later and investment into the site is still required, with Flamgard Calidair providing fire shut off dampers to the Chernobyl, as part of an €1.5 billion multinational engineering project. With fires at nuclear power plants still occurring, such as the 2017 power plant explosion at Flamanville, deemed “very serious” by industry experts, the call for advanced technology is of most importance. A significant technical issue led to a blast in the turbine hall in the unit, although there was no radioactive leak, a thorough investigation is being conducted into the concerning event.

Faced with this problem, a leading UK Nuclear family approached Coltraco Ultrasonic liquid indicator in 2003 and commissioned the first Permalevel™. Focused on continued advancement of safety technology, Coltraco have now developed the Permalevel™ Multiplex, a fixed fire suppression monitoring device, designed for permanent contents verification. The Permalevel  Multiplex™    is  designed  to  ensure  that fire  suppression  systems  are  always  fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event of a fire at a nuclear power plant. The application of the Permalevel™ reaches further, with customers using this equipment in alternate specialist and confidential manners to ensure safety in the station. With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an interruptible power supply and remote real-time monitoring, the Permalevel offers the efficiency that is now a requirement at nuclear energy sites.

Improve Your Efficiency and Lower Your Costs

Industries across the world use transformers across their facilities. These transformers come in a wide variety. It is imperative to check the oil levels inside to ensure they run smoothly and increase the long-term operation by improved maintenance. Testing oil levels is difficult to achieve traditionally. But today, ultrasonic technology enables non-destructive testing to be conducted by testing from the exterior, non-invasively.

The Safesite® solution is Portalevel® MAX INDUSTRIAL, the world leading handheld ultrasonic liquid level indicator. The likes of utilities companies and hydro from London to USA to the Middle East are using this product to solve their needs and enhance their maintenance measures.

Background

Transformers are used in electric power transmission and distributions and are devices that transfer electric power at different voltage levels. The main components within the transformers are the core and windings which are oil immersed. An oil conservator and Buchholz relay is also commonly found to monitor oil levels. Their combined function accommodates expansion and contraction of the oil in the main tank due to temperature changes or fault and also to provide audible alarms when the oil level falls below the minimum due to any leakages.

As transformers age, they become more likely to lose internal oil. It is important for oil levels in the transformer main tanks to be full, as they act as an insulator and allows the transformers to function efficiently. For transformers that are not fitted with an oil conservator or Buchholz relay, few means of oil level inspection exist and traditional methods include inspection by opening the lid of the transformer.

Portalevel MAX application 1

Application – issues with traditional inspection methods: When the lid is opened, the insulating oil is exposed to the moisture in the atmosphere and will increase the rate of oil deterioration causing the life of insulating oil to shorten. Shortened life spans lead not only to more frequent oil changes, but also significant downtime to the system when an oil change is conducted. Moisture in oil accelerates oxidation which results in the formation of acids and contributes to the formation of sludge. Over time, the sludge settles on the windings and the inside structures causing transformer cooling to be less efficient and an overall increase in transformer temperature which lowers its efficiency. Therefore, traditional methods of oil inspection inside transformers are not only time consuming and cumbersome, they also contribute directly to increased maintenance costs.

Solution: The Portalevel MAX INDUSTRIAL will be a safe, efficient and reliable solution to inspect oil levels in transformers non-invasively, typically in transformers that have no means of external oil indication. With the Portalevel MAX Transformer, oil level inspection can be done routinely without opening the lid of the transformer and thus prevent unwanted moisture from being absorbed by the oil which deteriorates the oil.

Results: This practice is capable of prolonging the life span of the transformer oil whilst reducing the cost incurred from frequent oil changes and significant downtime when a fault develops as a result of low oil levels or poor oil conditions.

Portalevel MAX application 2

Background Issue: High voltage transformer and switch gear units are often designed to be submerged in oil which act as an insulator, making sure any technicians working on the units are not at risk of potentially fatal shocks. As such, it is critical to know that the oil is still present and at a suitable level, before any maintenance or access to these units is undertaken.

Solution and Results: Many companies around the world are beginning to use the Portalevel MAX for checking the oil levels in Transformer & Switch Gear units. Since this equipment can non-invasively check the presence from the outside of the tanks, technicians can operate safely and with confidence.

The Portalevel MAX INDUSTRIAL is an invaluable tool that has helped customers worldwide reduce their annual maintenance costs and contribute to a more efficient servicing routine.

Meeting obligations

Interview with CEO Dr Carl Hunter.

“Given both the crew lives and cargo at stake, it seems unfathomable that these systems are not permanently monitored rather certified just once a year, particularly since it is a regulatory obligation to ensure that crew are in a position to check these,” Hunter says. Safety of Life at Sea’s (SOLAS) International Fire Safety Systems (FSS) code states that “means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the containers”.

It can be argued that the existence of regulation (such as that set by the the IMO and other authorities) guides – and occasionally curbs –  the direction taken by the free market. This then means that the current state of the market, where ‘price is king’ is either due to unwillingness on the part of the regulators to create an environment where safe engineering is rewarded or because the industry itself is unaware of new technology that will help them meet both the spirit and letter of the regulation.

 The fact of the matter is that technologies exist right now that can easily and accurately monitor everything from gases under pressure to liquefied contents and corrosion of pipework. The traditional method of using a cylinder pressure gauge (located at the meeting point of valve and neck of a pressurised cylinder) is both obsolete and impractical – especially when cost cutting may result in use of minimally-compliant gauge mechanisms.

Technological answers

Technologies will soon exist that will offer devices that monitor both liquid content and gas pressure safely from the external sides of the cylinder rather than within it. This means that crew will be able to monitor the contents and then calculate the mass/weight of the liquefied extinguishant. By measuring the pressure of the gas on top of the liquefied extinguishant they can can assess the pressure of an Inert gas (which is in an entirely vaporous form) to ensure that the cylinder is primed to perform when needed.

 Having systems that operate transparently will work not just to convince a vessel owner that his asset is in good hands, but also to reassure the crew that their safety is taken seriously by both – their employer and the  marine servicing company.

Its portfolio boasts 11 different model types of Portalevel brand liquid level indicator indicators including Portascanner (which uses ultrasound to test the integrity of confined spaces and can detect leak sites as small as 0.06mm) and Portagauge (which uses ultrasound to test the internal and external corrosion on pipework and cylinder wall thickness to an accuracy of +/-0.1mm). “We can monitor these 24/7 with the fixed, data-logging and autonomous monitoring system, Permalevel Multiplex & Permalevel Single Point,” says Hunter. “Signals from these fixed monitoring sites can be monitored centrally on the bridge and in the ship’s technical office concurrently. We see a day when products and systems will be designed that will monitor gas vapour above the liquid level and inert gases too.”

Transformer oil levels in a copper, lead, silver, zinc and gold mine

WHERE? Gold Mine, Australia

WHAT? Transformers are used in electric power transmission and distributions and are devices that transfer electric power at different voltage levels. The main components within the transformers are the core and windings which are oil immersed. An oil conservator and Buchholz relay are also commonly found to monitor oil levels. Their combined function accommodates expansion and contraction of the oil in the main tank due to temperature changes or fault and also to provide audible alarms when the oil level falls below the minimum due to any leakages.

WHY? As transformers age, they become more likely to lose internal oil. It is important for oil levels in the transformer main tanks to be full, as they act as an insulator and allows the transformers to function efficiently. For transformers that are not fitted with an oil conservator or Buchholz relay, few means of oil level inspection exist and traditional methods include inspection by opening the lid of the transformer.  When the lid is opened, the insulating oil is exposed to the moisture in the atmosphere and will increase the rate of oil deterioration causing the life of insulating oil to shorten. Shortened life spans lead not only to more frequent oil changes, but also significant downtime to the system when an oil change is conducted. Moisture in oil accelerates oxidation which results in the formation of acids and contributes to the formation of sludge. Over time, the sludge settles on the windings and the inside structures causing transformer cooling to be less efficient and an overall increase in transformer temperature which lowers its efficiency. Therefore, traditional methods of oil inspection inside transformers are not only time consuming and cumbersome, they also contribute directly to increased maintenance costs.   

HOW? The Portalevel® MAX will be a safe, efficient and reliable solution to inspect oil levels in transformers non-invasively, typically in transformers that have no means of external oil indication. With the Portalevel® MAX, oil level inspection can be done routinely without opening the lid of the transformer and thus prevent unwanted moisture from being absorbed by the oil which deteriorates the oil. This practice is capable of prolonging the life span of the transformer oil whilst reducing the cost incurred from frequent oil changes and significant downtime when a fault develops as a result of low oil levels or poor oil conditions.  

How have seals been tested traditionally?

Chalk testing is used traditionally for visual inspection of the compression integrity of doors and hatches on vessels that hold the potential for flooding. Chalk is applied evenly around the knife edge, coaming compression bars or panel cross seams of doorways. The door/hatch is then closed and sealed. Once re-opened the rubber gasket which pushes against the knife edge is visually inspected for the chalk line. Any breaks in the chalk line indicate a lack of compression in that area. It must be noted that chalk testing is NOT a leak test, but only provides an indication of potential compression issues

The International Association of Classification Societies states that a chalk test must be followed by a hose test. The hose test is used in conjunction to determine the weather tightness of doors and hatch covers. The spray from a nozzle of 12mm diameter is sprayed from a distance of 1 to 1.5 meters with a water jet pressure of 0.5 ms-1. This test should help identify any leakage from the hatch joints, although the exact location of the leakage sight cannot be pinpointed. Various drawback come with this test, for instance;

  • The hold is required to be empty as cargo can be damaged by water. This is not always possible and certainly poses more issues once the ship is laden with goods. 
  • The test requires drains to be opened posing a genuine pollution risk. 
  • Two people are required to carry out the test effectively. 
  • Cannot be performed in sub-zero conditions.
  • Water pressure and distance can affect results.
  • Time-consuming.

Both of these tests are time-consuming and sometimes completely impractical. Some circumstances have been highlighted that prevent this test from being conducted such as the hose test if dry cargo is within the hold being tested but these tests conducted at port or in dry dock will never reproduce conditions when the ship is at sea and therefore cannot expect to achieve the same standard. Claims resulting from water damage due to leaking hatch covers still contribute a huge part of the overall loss figures on dry cargo ships. This method is neither accurate nor time effective.

The accuracy of results is open to human error. The application of the chalk must be very accurate in order to avoid misdiagnosis. A false application of chalk could be construed as a compression issue.

In fact, the limitations of using chalk and water hose testing have been demonstrated in case studies from the Swedish P&I Club’s Recent Report:

CASE STUDY 1: 

Before loading with grain the cargo hatch covers had passed a water hose test. Once the vessel was fully loaded the cargo hatch covers were then sealed with tape. The cargo was mostly damaged underneath the cross-joints. During the voyage the vessel encountered heavy weather at Beaufort scale 10 with large waves and a swell which covered the hatch covers in water.  A visual inspection of the cargo hatch covers, rubber gaskets, securing devices, valves, ventilators and drainage channels found them to be in order. During the voyage the tape by the cross-joints between the forward and aft hatch panels of two holds had peeled off. A chalk test was carried out and this did not show any imprints on the rubber gaskets. At the discharge port it was found that part of the top layer of the cargo in a number of the cargo holds was damaged by seawater. Further investigation revealed that there was no contact between the compression bars and rubber gaskets on the cross-joint panels. In addition, an ultrasonic test identified that the cross-joints between the forward and aft hatch cover were also leaking. 

CASE STUDY 2:

A vessel had loaded wire coils. After loading was complete the crew taped across the transverse beams of all the cargo holds.  The vessel sailed through heavy weather that lasted for about two days. During this time the vessel was pitching and rolling heavily. The cargo hatch covers were covered in water.  When discharging at the destination port it was found that the steel coils in the top tiers were corroded. The coils below the centre line and folding seams were the most affected.  The surveyor tested the water integrity of the cargo hatch covers with an ultrasonic device which detected significant defects to the sealing arrangements. 

  • The surveyor found the following defects: 
  • The gaskets were in poor condition 
  • The non-return valves were clogged and the ball inside was not moving
    The transverse packing on the hatch covers was leaking
  • There were some cracked corners and leaking
  • The ventilation covers were leaking

How can ultrasound change this?

The Swedish P& I club recommend using Ultrasound. As stated in their 2018 report “A much more effective method is to use an ultrasonic device, which is designed for this purpose and can pinpoint the area which is leaking, and if the compression of the gasket is sufficient. The advantages of using this type of equipment are evident, since ultrasonic tests can be carried out during any stage of the loading without risking cargo damage. The test can also be completed in sub-zero temperatures. The ultrasonic test should be carried out as per the class requirements.” 

Ultrasonic testing is a dramatically more sensitive, accurate and reliable method for testing cargo hatch covers, bulkheads and doors for Watertight integrity testing on all vessels. A multi-directional ultrasound emitter is placed in a hold. The opening being tested is then sealed and the receiver switched on ready to receive any leakage of ultrasound via a set of headphones. An increased reading of ultrasound signal signifies an issue with the integrity of the door/hatch. Further, and closer inspection will allow identification of any specific leakage sight along with the severity. This test will take approximately 10 minutes and requires only one operator.  

Ultrasonics is proven to be the quickest, easiest and most efficient method of testing watertight & weather-tight seals of Hatch Cover Tester, doors, multiple cable transits. The Portascanner® WATERTIGHT is the most accurate model of its kind – proven to 0.06mm (+/-0.02mm). This is designed primarily to enhance the ease and accuracy with which critical watertight, airtight or weather tight seals can be inspected for leak sites or areas of reduced compression in the seal. The ultrasound generator emits a modulated signal of a specific frequency of ultrasound (in most cases 40,000Hz). The receiver then picks up the signal and converts it into a result indicating watertight integrity. The easy to use Portascanner® WATERTIGHT allows crew member to check for failing seals whilst at sea which allows for prompt maintenance.  

Coltraco Ultrasonics focus on benefitting the crew; designing innovative ultrasonic solutions which the crew will be happy to use by being easy to operate, quick, accurate and a better method to traditional techniques. Thus increasing the likelihood of tests being regularly conducted, in line with regulations and even going above and beyond for more frequent testing. By so doing, the crew will be creating a safer ship.

Are you protected from fire?

It is quite clear that minimal compliance with regulations is just not enough, and that the need to go above and beyond the standards exists for safety critical environments and high value assets. This haphazard approach is dangerous and often unknown to the users of the infrastructure.

There is an assumption that protecting buildings by installing fire extinguishing systems and covering the building with insurance is enough to provide full safety of a building. But this neglect and minimal understanding of the need for maintaining the fire extinguishing systems leads to only one thing, a gap in the protection of people, assets + facilities.

Simply put, the ‘ungoverned space’ is the area in the fire industry where either the regulations or the protecting systems of the critical infrastructure are not effectively providing consistent and reliable safety. Coltraco repeatedly push for this life-threatening issue to be dealt with, with specific regard to loss of contents in fixed fire extinguishing systems and need for improvements to room integrity testing.

To go above and beyond the regulations, building owners and managers must test and monitor their fire extinguishing systems to check for leakage. By using the ultrasonic liquid level indicator, the Portalevel ® MAX and/or the constant monitoring system the Permalevel ® Multiplex, building owners and managers are able to exceed the standards and ensure that the gaseous extinguishing systems are able to extinguish in the event of the fire.

In a time when cost drives safety decisions, using either or both of these systems allows a company to reduce their insurance premiums without compromising the safety of lives, assets and infrastructure. The recommendation of using Portalevel® Max and Permalevel® Multiplex from insurers benefits them as to guaranteeing long-term top customers who aspire for improved safety.

As with many leaders in the fire industry, Coltraco are pushing for rapid action to be taken in protecting peoples lives. There is no room for the industry to fall back into old habits. The fire industry must lead the way to a safer future. Constant monitoring of gaseous extinguishing systems and room integrity must be implemented, people’s lives depend upon it.

Test Corrosion with the Portagauge® 3 and 4

Our single-echo Portagauge™ 3 has been in service and upgraded many times for 20 years. Known as the “low cost Marine Superintendents Thickness Gauge” it is widely used in the shipping industry. Small, hand-held, highly versatile and accurate it is joined by the multiple-echo metal-only Portagauge® 4 – so that it takes only the metal reading not its coating as well. We now have a range of ultrasonic sensors to work aboard ships but also to test wall-corrosion of fire safety cylinders and gaseous fire extinguishing and fire sprinkler pipework so that testing can take place cleanly and non-invasively, without disturbing the system.

Technical Specifications of Ultrasonic Thickness Gauge

Here, we have enlisted technical specs available with this ultrasonic gas leak detector. Give it a look!

Dimensions

  • Width: 90mm
  • Height: 147mm
  • Depth: 28mm
  • Weight: 325grams

Accuracy

±0.1mm (0.005”) or ±0.05mm (0.002”)

Verifiable Agents

Steel, Aluminum, Brass, Grey Cast Iron, Cast Iron, Copper, Zinc

Power Supply

3x disposable AA alkaline batteries or rechargeable NiHM/NiCD (battery life 20 hours)

Sensor

  • 5 MHz 13mm (1/2”) (blue) & 6mm (1/4”) (blue)
  • 3.50 MHz Probe 13mm (1/2”) (green)
  • 2.25MHz Probe 19mm (3/4”) (yellow) & 13mm (1/2”) (yellow)
  • Display
  • LCD Numeric Digital Display with LED Bar Graph

Operating Temperature

-10 C to +50 C (14°F to 122°F)

Certificates

  • ISO 19011 Registered
  • CE

Classification

  • British Standard BS EN 15317:2007 which covers the characterization and verification of ultrasonic thickness measuring equipment
  • IP Rating 65

Warranty

  • Lifetime Customer Support
  • Sensor: 1 Year Warranty
  • Main Unit: 3 Years Warranty

Portalevel Mini Nippon Content

  • 1 Hardy Carrying Case
  • 1 Potagauge IV unit
  • Operating Instructions
  • 1 2.25MHz Sensor
  • Calibration certificate

For further information, download PDF

Deliver fire engineering to protect risks

A data centre is expensive to build and maintain. It generates significant heat. Every bank with a branch network has hundreds of them. The value of them are very high but the value of their inability to sustain business continuity is far higher than their physical assets. Almost incalculable. And yet Insurers are asked to underwrite them and the fire industry to deliver their protection at the cheapest price. Who today in the security industry would consider installing an alarm system without monitoring its overall status not only its actuation and integrating the whole of it to the building management system with central monitoring being an essential part of it ? Who would build  a ship or offshore platform and fit it with say power generating auxiliary machinery without installing emergency power systems or monitoring their condition states ? These are basic engineering principles of building redundancy into ones systems and monitoring ones systems.

The fire industry though still approaches the installation of a dynamic and pressurised fixed gaseous extinguishing system as if it needs no integration into a BMS other than to alert as to its actuation. Nor does it think it needs constant monitoring lest it reveals the underlying engineering risk of them. Can this be because good engineering is left unrewarded in the fire industry? Or might it be that the fire industry is more concerned to negate customer awareness of its need lest it reveals that pressurised systems do discharge and leak? These are needless concerns. All good engineering demands the monitoring of dynamic structures and a highly pressurised cylinder is a dynamic structure. It is designed to protect a critical infrastructure or asset. Without constant monitoring a risk is generated in the very environment for which it is designed to reduce risk. The risk is not only to the asset, but to the people who work in the asset and their ability to enable business continuity in the high value asset under risk. We aim to be the lead technical authority in the constant monitoring of gaseous extinguishing systems during the life of the system once it is installed and commissioned.

The fire industry has access to customers who depend on it to deliver fire engineering to protect their risks. Insurance companies underwrite that risk. But the mathematics of its failure are high, whether in the application and understanding of the formulas they use to calculate design concentrations of gases or flow rates or in the deployment of fundamental engineering principles to protect dynamic pressurised systems and the structures they are working so hard to protect against the risk of fire.

How can ultrasonic technology cut down the ungoverned space?

Our experiences in the fire industry globally have included wonderful ones of professionalism and care from dedicated Fire Engineers and Risk Managers. Many of our products and systems today and others that we have under development are the direct result of advice and guidance that we have received from these very fine Fire Engineers. Set alongside these however are highly concerning anecdotal experiences:

  • Systems portrayed and installed by contractors as NOVEC™ 1230 but filled with sand or water.
  • High pressure gas systems without the means to actuate them.
  • Cheap pressure gauges sticking in position under humidity or mechanical fatigue.
  • Safety pins being retained in position in the cylinder valves after installation.
  • CO2 & marine CO2 systems with 20% of the CO2 cylinders installed on commercial shipping being empty or partially filled.
  • Over-filled and under-filled cylinders.
  • Pipework and cylinders freshly painted but with severe internal corrosion.
  • Room integrity testing with questionable results and with the room integrity remaining un-monitored after testing.
  • Liquefied extinguishants being confused by installers with Inert gas systems.
  • There exists a lack of understanding of the organic compounds of some liquid extinguishants and their corrosive effect on the cylinder in the event of condensate ingress.
  • Shipping companies not implementing the FSS code of the IMO SOLAS regulations.
  • We have been regularly asked how to operate portable Portalevel® liquid level indicators on dry powder extinguishers.

So how does ultrasonic technology cut ungoverned space within the fire industry down?

  • Ultrasound is merely acoustic (sound) energy in the form of waves of high frequency that are above the human audible range.
  • Portascanner® WATERTIGHT uses ultrasound to test the integrity of confined spaces and can detect leak sites as small as 0.06mm.
  • Portagauge® 3 uses ultrasound to test the internal and external corrosion on pipework and cylinder wall thickness to an accuracy of +/-0.1mm.
  • Globally we are known for the design and manufacture of 11 different model types of Portalevel® liquid level indicators. Accurate to +/-1.5mm for CO2, FM-200™ , NOVEC™ 1230, HFC-225 & 227, remaining Halon systems, FE-13™, FE-25™ and FE-36™. 

Faster, Better, Cheaper: Portascanner® WATERTIGHT

Owners, managers, marine surveyors, third party servicing companies and other mariners have pledged their support for the Portascanner® WATERTIGHT for years.

For 3 simple reasons: “it is faster, better, cheaper” than any competitor. But don’t take Coltraco Ultrasonics’ word for it, here are 3 customer testimonials:

We did some transit inspection work on one of our customers vessel using the Portascanner and we are very pleased with your instrument. We are looking forward extending our service offer using it.” – Techsol Marine, Canada

“The fleet was equipped with a unit per Bulk Carrier and the units are and working well, providing the confidence that there will be no problems with water damage claims.” Ship Management Company

“Our PORTASCANNER Watertight integrity testing unit performed well during the entire period of use, proved rugged and we feel sure that if it had not required returning for mandatory calibration and certification, the unit would have performed well for many more years to come.” Captain J.F. Holmes, Botrans

The Portascanner® WATERTIGHT is:

  • Faster: designed for ease of use from poorly educated crew up to chief engineer – no need for extensive and expensive training courses, simply read the operating instructions in the kit and away you go
  • Better: most mathematically accurate to 0.06 (+/-0.02mm) to identify leak integrity quickly and easily allowing prompt maintenance if required
  • Cheaper: never beaten on price guarantee from Coltraco Ultrasonics who are used to serving the world’s leading fleets for 30 years

The Portascanner® generator is the most efficient of all on the market. Unlike the old “Hedgehog Generator”, the Portascanner® generator has excellent battery life, is light and small, has magnetic mount, is highly sensitive and uses smart pinpoint technology to direct ultrasound to the seals during testing.

Coltraco Ultrasonics’ mission delivering Safeship® solutions to improve safety of life, assets and vessels at sea. They do by manufacturing high quality British instrumentation, supplied to over 100 countries worldwide, since 1987. Coltraco Ultrasonics focus on benefitting the crew; designing innovative ultrasonic solutions which the crew will be happy to use by being easy to operate, quick, accurate and a better method to traditional techniques. Thus increasing the likelihood of tests being regularly conducted, in line with regulations and even going above and beyond for more frequent testing. By so doing, the crew will be creating a safer ship.

Discover more about Coltraco Ultrasonics’ commitment to customer care and safety on www.coltraco.com.

Protect tankers from the risk of explosion 

Addressing fire in tankers is critical, especially when all owners and managers are seeking to reduce risk, cut costs and surge on safety. The safety of tankers is integral for the continuation of their business success. Catastrophic risks to human life, vessel, reputation and revenue all result from a fire event onboard. One simple step towards improving fire safety onboard is ensuring all equipment is intrinsically safe approved, to protect the crew against the risk of explosion. 

The risk of explosion on tankers means that technology inspecting the fixed fire suppression systems must be designed for the atmospheres on tankers. LNG is only dangerous when it meets an ignition source. The International Maritime Risk Rating Agency (IMRRA) placed 12.5% of tankers it assessed in 2017 into the higher risk category for their fire safety. 

SPECIFIC AREAS OF RISK

The engine room, motor rooms and cargo compressor rooms on tankers carrying LNG & LPG are often protected by CO2 & marine CO2 systems. Fully operative fire systems on an offshore platform is paramount and demanded by ISO 14520 and PFEER codes. Gaseous extinguishing systems are highly pressurised, the risk of leaking and discharging is accepted as part of their use, shown in the regulations that demand their upkeep e.g. IMO SOLAS FSS Ch5. 2.1.1.3. The systems are pressurised approximately 50 bars, significantly higher than a standard cup of water, which is just 1bar. It’s accepted that these systems are not passive but dynamic, thus requiring monitoring. 

SERIOUS INCIDENTS

Serious cases of tanker fires and risks have been reported in the past years. In March 2017 there was an explosion on a Chinese Tanker, in which 3 crew members went missing and serious damage to the vessel was caused.  One of the most tragic incidents of 2018 was the Sanchi oil tanker explosion, on 6 January 2018. After the explosion on the tanker, tragically 31 crew members lost their lives. The Sanchi oil tanker was carrying 136,000 tonnes of natural gas condensate, and the estimate financial damage of the sinking of the vessel is estimated at $110 million.

 TRADITION VS TECHNOLOGY 

For the gaseous systems, the traditional method requires turning the system off, dismantling and manually weighing each cylinder on industrial scales. Routine maintenance is liable to be overlooked because the crew is unqualified to test or insufficient attention is given by the owner of the system. It’s neglected to the peril of the lives of occupants of the vessel and at the risk of crippling financial and reputational loss to the tanker. 

Ultrasound should be harnessed by innovators in the safety of offshore platforms.  By utilising a sensor which acts as a transceiver, an ultrasonic liquid level indicator is capable of detecting liquid levels within any single-skinned container through transmitting an ultrasonic pulse and analysing the strength of the returned signal to determine the level of contents.  Importantly, due to the risk of explosion on the oil and gas tankers, ultrasonic liquid level indicators used on board to ensure fire safety, must be Intrinsically Safe.  

APPROVE THE APPROVAL METHODS

Intrinsically Safe is a design technique applied to electrical equipment and wiring for hazardous locations. The technique is based on limiting energy, electrical and thermal, to a level below that required to ignite a specific hazardous atmospheric mixture. 

LEADING OPERATORS LEAD ON FIRE SAFETY

At the request of Shell and similar Tanker Operators, Coltraco Ultrasonics have designed an Intrinsically Safe, ATEX Zone 1 Approved, ultrasonic liquid level indicator which offers unparalleled accuracy, speed and ease of use.  Using innovative methods of inspecting leaking cylinders with ultrasonics, enables identification in under 30 seconds using Portalevel® Intrinsically Safe with one person, instead of the traditional 15 minutes, with two people laboriously weighing. Using ultrasonic technology - to pinpoint the liquid level of suppressant agent in the cylinders of the extinguishing system- testing is quicker and easier.

Ensuring that the fire safety systems on board the gas tankers are operational, via smart ultrasonic technology, designed specifically for explosive atmospheres, is essential for protecting lives, the vessel and the cargo.

Why Buy a Portamonitor® Bearing Indicator?

84% of degradation to bearings occurs once installed. Monitoring can detect abnormalities caused by

these and allow preparations for maintenance or replacement, ultimately avoiding failure and saving

money. A failure of a bearing is not just the part itself, but for example in the marine industry, the cost

to a vessel owner is repair, fitting and downtime in dock and loss of earning whilst not operational.

Without systematic procedures and planned maintenance (enabled by condition monitoring) then cost

can be very damaging to a business.

  • Portamonitor® is a sophisticated AE device that combines Distress® and db levels
  • Decibels indicate the actual noise signature of the bearing. By checking the noise of the bearing

over time (whilst running at comparative speeds) as the noise increases, it indicates an increase in degradation of the bearing. This is used for continuous long-term monitoring, i.e. checking

the bearing as part of scheduled maintenance, recording he readings each time and watching

for a spike in readings

  • Distress provides an instant indication of bearing health. Readings over 10, indicate a bearing

declining in condition

  • Sound generated by friction and impacts caused by poor lubrication or bearing damage

propagates as a stress wave is detectable by the Portamonitor®.

  • Signal is processed at sensor level allowing quick and effective diagnostics.

4. Competitive Advantages of the Portamonitor®

Appropriate monitoring matters because false diagnosis can result in undue downtime, wasted time,

money and resources.

4.1. When to use?

Portamonitor® can be used for pre-service (proof) testing as well as in-service (re-qualification) testing

and condition monitoring.

4.2. Benefits of distress® readings

Distress® provides an instant indication of the health of the bearings. It measures the transient activity,

such as impacts, friction and surface deformation caused by micro-pitting and fractures. Algorithms

inside the Portamonitor® sort this data for comparison against acceptable limits categorised by a

number.

4.3. Display

The display on the Portamonitor® will show a numeric value indicating the level of distress, for instance:

5-10 indicates the system in “OK”. Between the value of 10-15 indicates the system is “SUSPECT”, and

requires further monitoring, whereas >15 indicates a “POOR” system and requires attention.

4.4. Low Cost & Money Saving

The Portamonitor® is low cost and is very easy to use and train crew and easy to integrate into

scheduled maintenance. Using this regularly extends the lifetime of key pumps, bearings and gearboxes

saving significant amounts of money over the lifetime of the vessel, extending the time between

machinery replacement and ensuring failures do not occur at critical times

Brand New Flow Meter – Portasonic® 2.FL0

Coltraco Ultrasonics are excited to announce the brand-new generation of Portasonic® 2.FL0.

After rigorous research and design, Coltraco are proud to release a more accurate, reliable and flexible

ultrasonic flow meter.

  1. 1. Accurate - the Portasonic 2.FL0 is accurate to +/-1% accuracy
  2. 2. Reliable - the Portasonic 2.FL0 is calibrated to ISO17025 standards
  3. 3. Flexible - the Portasonic 2.FL0 has 3 modes of operation, making it suitable to different

Environments

The Portasonic® 2.FL0 ultrasonic flow meter is used to measure flow rates of clean liquid in pipe. The

device comes with clamp on transducers for non-invasive measurement. The Portasonic® 2.FL0 utilizes

two transducers, one that acts as ultrasonic transmitters and the other a receivers. There are three

principles of operation; V-method, W-method or Z-method which refers to transducer positioning. The

software calculates the time it takes for the ultrasonic pulse to pass from the transmitter to the

receiver, which is dependent on the flow rate.

With no moving parts and an easy digital set up mean it’s a cost effective and time effective

maintenance solution. Reduction of maintenance time and cost is a driving factor within any business

operation with pipework installed. Accurate flow data provides the chance to make energy saving

measures by fine tuning the systems.

Portasonic® 2.FL0 can be used for spot checks, using an internal, rechargeable battery or for extended

continuous operation as a 4-20mA flow transmitter with AC power input. The ease of use and accuracy

of Portasonic® 2.FL0 allows for improved business continuity and safer buildings and industrial facilities

across a variety of industry verticals. With the ability to conduct spot checks at mandated intervals, full

integrity of pipework can be ensured.

Protect your reputation, improve your fire safety management

Coltraco Ultrasonics provide smart Safesite® solutions which enable wind turbine owners and operators to improve their fire safety management and reduce the risks to human life, business continuity caused by any downtime and thus minimise risk to reputation.

Focused on continued advancement of safety technology, Coltraco have now developed the Permalevel™ Multiplex, a fixed fire suppression monitoring system, designed for continuous contents verification. The Permalevel® Multiplex is designed  to  ensure  that fire  suppression  systems  are  always  fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event of a fire. With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an interruptible power supply and remote real-time monitoring, the Permalevel® offers the efficiency that is needed in a wind turbine.

For regular inspection, the Portalevel® MAX is a handheld ultrasonic liquid level indicator, which can service a cylinder in 30 seconds (in contrast to 15minutes by traditional manual weighing) with accuracy of up to 1.5mm off the true liquid level. The Portalevel® MAX builds on Coltraco Ultrasonics’ 30 years’ experience in designing, manufacturing and supporting ultrasonic liquid level indicating equipment, in 108 Countries and numerous market sectors and environments.The development program was born out of the desire to further improve on Coltraco’s existing 8 designs and taking on board feedback and opinions of our customers

What is one of the core challenges in the coal mining industry? Saving people, assets and infrastructure from fire.

In the coal industry, there are continual challenges that owners and operators face in ensuring consistent plant safety.

Some of the key challenges presented to the staff are fire prevention and control, corrosion in pipework and structures, and ensuring that vital power sources such as transformers are always operational.

The case studies below exemplify the challenges in the mining industry and how these can be overcome.

Fire & Explosion:

WHO? NRG Energy

WHERE? The Morgan Town Plant is a coal powered power station based in Maryland. NRG own the USA’s largest and more diverse power generation competitive portfolio. NRG are dedicated to smart and reliable energy sourcing, and emission reductions although coal is a significant part of the electricity generation.

WHAT? Fires and explosions pose a constant threat to the safety of miners and to the productive capacity of mines. Mine fires and explosions traditionally have ranked among the most devastating industrial disasters. The prevention and control of fire and explosion in mines is fundamental. On a mine site, fire hazards may occur in and around process plants, underground conveyors, static and mobile plants, draglines, workshops, substations, monitored control rooms and switch rooms. All mines have highly expensive and mission critical equipment that typically operate day and night under extremely hostile conditions, in vast, remote and difficult to access environments, especially on underground equipment.

Gaseous fire suppression systems are the preferred systems installed to protect the high value asset and safeguard operators and processes so as to guarantee business continuity.

WHY? Gaseous extinguishing systems are pressurised, and therefore exist in a dynamic state i.e. they can leak. As supported by the BS EN ISO 14520 regulation, if clean agent cylinders leak beyond 5% of contents or 10% of pressure they will not extinguish a fire, as they will be below their design concentration.  As the “golden standard” of clean agent systems,  BS EN ISO 14520 highlights the asset owner’s responsibility to check that the clean agents contents exist; that the protected space can be sealed; that the pipework used to discharge the clean agents are clear of particulates that can clog up the nozzles which reduces the amount of clean agent to the point where it cannot operate in the event of a fire.

HOW? After witnessing fire service experts undertaking ultrasonic liquid level indication in just minutes, NRG Energy were keen to change from their previous method of weighing which took over 15 minutes. The Portalevel® Max is an example of the technologically advanced techniques that the company are implementing to lead the way in safe and sustainable coal sourcing.  Portalevel® MAX is a handheld ultrasonic liquid level indicator to inspect CO2, clean agents and more liquefied gaseous agents, by one person in just 30 seconds  As a safety critical asset, the Morgan Town Plant saw the necessity in investing into their fire safety.

CASE STUDY 2: Corrosion in Metal Work

WHO? Vales Point Power Station

WHERE? Delta, Australia. The coal fired power station is at the southern end of lake Macquarie. This power station was built in the 1960’s as a four-unit station, but now operates two 660 MW generating units. The power station is owned and operated by Power International, with the capacity of around 1,320 megawatts, providing 24 hours of around the clock electricity.

WHAT? Corrosion in power plants leads to costly repairs, prolonged maintenance, material losses, poor performance and, if left untreated, failure. In power plants, corrosion is the primary factor leading to costly and critical downtimes. When corrosion affects systems carrying steam or hot water—such as pipes—material or welds may fail, causing bodily injury or death. Water, steel and dissolved oxygen within boiler units causes boiler tubes to oxidize and corrode. The corrosion forms grooves within the tubes that lead to cracks and boiler failures. Corrosion can account for up to 75 percent of a plant’s arrest time during maintenance and up to 54 percent of production costs.

HOW? To protect against the threat of corrosion, Vales Point Power Station bought a Portagauge® for testing normal structure and stainless steel, so that they could monitor corrosion rates. The Portagauge® 3 is a single-echo portable thickness gauge. The quick, simple and hardy Portagauge® 3 allows accuracy of ±0.1mm even on corroded, challenging and some plastic surfaces. With a 50 hour battery life, measuring thickness ranges between 1.5mm to 99.9mm and a variety of verified testing materials such as steel, quartz and glass PVC, the Portagauge® 3 provides the great amount versatility needed to suit a diversity of safety needs. The handheld highly dependable unit is ideal for a wide range of industrial applications such as fire cylinders, bulk heads, pipework, chemical equipment and oil storage tanks.

Improve Your Efficiency and Lower Your Costs

Industries across the world use transformers across their facilities. These transformers come in a wide variety. It is imperative to check the oil levels inside to ensure they run smoothly and increase the long-term operation by improved maintenance. Testing oil levels is difficult to achieve traditionally. But today, ultrasonic technology enables non-destructive testing to be conducted by testing from the exterior, non-invasively.

The Safesite® solution is Portalevel® MAX INDUSTRIAL, the world leading handheld ultrasonic liquid level indicator. The likes of utilities companies and hydro from London to USA to the Middle East are using this product to solve their needs and enhance their maintenance measures.

Background

Transformers are used in electric power transmission and distributions and are devices that transfer electric power at different voltage levels. The main components within the transformers are the core and windings which are oil immersed. An oil conservator and Buchholz relay is also commonly found to monitor oil levels. Their combined function accommodates expansion and contraction of the oil in the main tank due to temperature changes or fault and also to provide audible alarms when the oil level falls below the minimum due to any leakages.

As transformers age, they become more likely to lose internal oil. It is important for oil levels in the transformer main tanks to be full, as they act as an insulator and allows the transformers to function efficiently. For transformers that are not fitted with an oil conservator or Buchholz relay, few means of oil level inspection exist and traditional methods include inspection by opening the lid of the transformer.

Portalevel MAX application 1

Application – issues with traditional inspection methods: When the lid is opened, the insulating oil is exposed to the moisture in the atmosphere and will increase the rate of oil deterioration causing the life of insulating oil to shorten. Shortened life spans lead not only to more frequent oil changes, but also significant downtime to the system when an oil change is conducted. Moisture in oil accelerates oxidation which results in the formation of acids and contributes to the formation of sludge. Over time, the sludge settles on the windings and the inside structures causing transformer cooling to be less efficient and an overall increase in transformer temperature which lowers its efficiency. Therefore, traditional methods of oil inspection inside transformers are not only time consuming and cumbersome, they also contribute directly to increased maintenance costs.

Solution: The Portalevel MAX INDUSTRIAL will be a safe, efficient and reliable solution to inspect oil levels in transformers non-invasively, typically in transformers that have no means of external oil indication. With the Portalevel MAX Transformer, oil level inspection can be done routinely without opening the lid of the transformer and thus prevent unwanted moisture from being absorbed by the oil which deteriorates the oil.

Results: This practice is capable of prolonging the life span of the transformer oil whilst reducing the cost incurred from frequent oil changes and significant downtime when a fault develops as a result of low oil levels or poor oil conditions.

Portalevel MAX application 2

Background Issue: High voltage transformer and switch gear units are often designed to be submerged in oil which act as an insulator, making sure any technicians working on the units are not at risk of potentially fatal shocks. As such, it is critical to know that the oil is still present and at a suitable level, before any maintenance or access to these units is undertaken.

Solution and Results: Many companies around the world are beginning to use the Portalevel MAX for checking the oil levels in Transformer & Switch Gear units. Since this equipment can non-invasively check the presence from the outside of the tanks, technicians can operate safely and with confidence.

The likelihood of the gaseous system effectively extinguishing.

Would you enter a building if you were told as you stepped in that in the event of a fire there was a chance that the extinguishing system wouldn’t put it out because the fire couldn’t be contained?

No! People expect, and rightfully so, that in the event of a fire the extinguishing systems would be in full working order to do just that – extinguish. Given that the gaseous systems are designed specifically to the individual need of that room, building e.t.c, then a leak sites in the room could meant that the comparted area couldn’t withhold the fire.

The likelihood of the gaseous system effectively extinguishing the fire gets lower and lower as the protected area becomes larger than the size that the extinguishing system was designed for. This is not a game of chance. The lives of people depend upon it. Enough is enough. The technology exists right now to support Door Fan Testing in providing a holistic and thorough integrity test of critical infrastructure.

Key Facts

  • Compartmentation = fire stopping e.g. walls and floors
  • Every 7 seconds, a fire breaks out, worldwide
  • 700 fatalities caused by fire in the UK
  • £7bn is the cost of fire to the UK economy according to GovUK: every day £3.4m in costs by business disruption caused by fire - £1.3bn p.a.
  • 44% of all insurance claims are caused by fire

SOURCE: Aviva Insurance, 2012

APPROVED DOCUMENT B (ADB)

The regulations demand that compartmentation is upheld for the safety of the individuals, who entrust their lives into its integrity. Approved document B, Fire Safety, Volume 2, Buildings other than dwelling house states that: 8.0 Every compartment wall should form a complete barrier to fire between the compartments they separate. 8.35 – any stairway or other shaft passing directly from one compartment to another should be enclosed in a protected shaft so as to delay or prevent the spread of fire between compartments. However, despite regulations best effort to promote the implementation of compartmentation and room integrity testing, the last review of the Building Regulations Approved Document B was made in 2006 (12 years ago) and its next review was not due to be completed until 2022 (which would then be a gap of 17 years), meaning that the attention that is deserved is often disregarded.

  • ADB B3-4 “the building shall be designed… so that the unseen spread of fire and smoke… is inhibited”
  • Appendix B Breaching fire separation “to ensure effective protection again fire, walls and floors providing fire separation must form a complete barrier, with an equivalent level of fire resistance provided to any openings such as doors, ventilation ducts, pipe passages or refuge chutes.”

ISO14520-1:2015(E)

We will lead with some extracts from the regulations which is why this paper argues that the industry is sometimes minimally compliant or even non-compliant due to a lack of understanding of fire systems and their connection to compartmentation. This paper calls for a more holistic approach to fire safety. The author suggests the need for a resident mathematician to assist the industry.

  • 9.2.1.3 The storage container contents shall be checked at least every six months. a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced.
  • 9.2.4.1 At least every 12 months it shall be determined whether boundary penetration or other changes to the protected enclosure have occurred that could affect leakage and extinguishant performance. If this cannot be visually determined, it shall be positively established by repeating the test for enclosure integrity in accordance with Annex E.
  • 9.2.4.2 Where the integrity test reveals increased leakage that would result in an inability to retain the extinguishant for the required period, remedial action shall be carried out.
  • A.3.2 Engineered systems: need information and calculations on the amount of extinguishant;
  • Annex F - b) Every 6 months: Perform the following checks and inspections: 5) for liquefied gases, check weigh or use a liquid level indicator to verify correct content of containers; replace or refill any showing a loss of more than 5 %;
  • Annex F 6.2.4.2 Means shall be provided to indicate that each container is correctly charged.

The assumptions in these are that gaseous extinguishing/suppression systems do leak. The regulations that underpin the pursuit of them explore their leak identification every 6 months. Gaseous extinguishing/suppression systems however are installed to protect special hazards in critical infrastructure as their key objective. If the hazard is special and the infrastructure critical then this is the case for the constant monitoring of the suppression systems that aim to deliver the protection of them.

Meeting minimum fire standards is not enough

As the CEO of Coltraco Ultrasonics I am dedicated to ensuring our technology solves industry problems. Not only to become a successful business in terms of profitability but in terms of sustainability and genuinely offering service to the industry in order to reduce risk, improve safety and hopefully have a small part in saving lives. We have provided a smart solution to quick and easy assurance of compartmentation using ultrasound to detect signal leaking through any apertures within the barriers.

The technology exists right now to solve this problem.  

In 2017 with the continuing developments in technology, and following the ongoing inquiry into the Grenfell tragedy, there is an expectation that safety should be all encompassing. We cannot let this expectation continue to be a fantasy.

How can crew test their CO2 installations without disturbing them?

As stated in IMO SOLAS FSS Ch5. 2.1.1.3: “Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the container”

Often this is misunderstood, this code specifically states that the crew must test their extinguishing installations in between the periodic inspection, maintenance and certification. Only having the annual inspection by accredited marine servicing companies is not enough – the crew must take responsibility for its own fire protection.  However, what must be noted is that the crew are often not trained or certified to shut-down, dismantle, weigh and re-install the gaseous cylinders. To overcome this, ships need to test their CO2 & marine CO2 systems for contents in-between the annual certification checks by marine servicing companies.

Using an ultrasonic liquid level indicator is the only way that the crew can safely test their CO2 without disturbing them. Coltraco Ultrasonics designed the Portalevel® MAX Marine & Portamarine® ultrasonic liquid level indicators, as radioactive units were being phased out. If shipping companies implemented the IMO SOLAS FSS codes by testing safely and quickly (just 30-60 seconds per cylinder) by using liquid level indicators and marine servicing companies were able to do their work without allowing for time pressures, then marine safety would be far safer.

Solutions for any vessels marine gaseous extinguishing system exist:

  • Portalevel® MAX Marine liquid level indicators used by the crew weekly to test for contents
  • Portascanner® WATERTIGHT, watertight integrity test indicators used by the crew to test for compartmentation
  • Portapipe® pipework integrity indicators used to test for pipework obstructions and the Portagauge® thickness gauges for pipework corrosion
  • Compressed air testing of the pipework and flanges to test the pipework system’s ability to withstand the pressures of the gas on actuation (and this is the only test which recommended to be solely the responsibility of a  “responsible” shore-based contractor)

Fire Safety Improvements are Required

In a recent position paper, the International Union of Marine Insurance (IUMI) said it believed “further steps are required to improve fire safety”. In this article, Coltraco Ultrasonics break down why this is the case.

Why does fire safety need to be improved?

According to Lloyds List, almost 10% of all total losses at sea in the last decade were caused by a fire on board.

Statistics based on the VTT Technical research centre in Finland show there is expected to be 33 vessels a year with fire resulting in total loss.*

What risk does fire pose to the crew?

Lives are at stake. This is unacceptable.

Tragically in March 2018, 5 people lost their lives in the Maersk Honam fire. Financially, the damage from the fire will be the biggest on record, running into hundreds of millions of dollars. Disappointingly, this was not an unusual event. In container vessels alone, the past decade has seen a number of serious fires including MSC Flaminia in July 2012 causing up to $280 million of liability, Eugen Maersk in June 2013, APL Austria in February 2017 and MSC Daniela in April 2017. In July 2018, the merchant vessel SSL Kolkata sank due to a fire than ran for 3 weeks. From SSL Kolkata A number of containers already went into water and are floating in the area, endangering shipping.

What concerns have been voiced?

Fires on board ships can be devastating, to crew, vessel and cargo.

The general concern for IUMI is the growing size of ships and the inadequacy of fire prevention measures on board. As vessels become larger and more sophisticated, a greater financial interest is tied up into one ship, meaning that the risks are magnified if the vessel would get into difficulties e.g. a fire. From a marine insurer's perspective, it is a simple equation: the larger the vessel, the more cargo it will carry, and hence the greater the sum insured.

What protects the crew from fire?

A ship’s gaseous extinguishing system typically comprises between 200 and 600 cylinders each containing 45KG of CO2 under high 720 psi/ 49 bar pressure. (Other suppressant clean agents such as FM-200® and Novec™1230 are becoming more widely used.)

How are we failing to protect the crew with these gaseous extinguishing systems?

Because gaseous extinguishing systems are highly pressurised, the risk of leaking and discharging is accepted as part of their use and this is shown in the regulations that demand their upkeep.

IMO SOLAS & FSS Code Chapter 2.1.1.3 - “Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the containers.”

Some marine service companies estimate that 20% of a ship’s CO2 cylinders have discharged or partially leaked their contents at some point in their lifetime also know that occasionally marine “servicing companies” unintentionally leave it disabled.

Why is this the case?

Time pressures.

Most marine servicing companies only have 4 hours on a vessel in a port to test up to 600 cylinders. It is known that it takes 15 minutes for a 2 person team to shutdown, dismantle and weigh a single CO2 cylinder, which is equal to 16 cylinders in 4 hours. Yet despite this, every CO2 cylinder on the vessel receives a “tested and certified sticker” and the marine CO2 system is certified and a certificate is issued.

As well as this, any vessel with a gaseous extinguishing system needs to consider 3 factors:

  • Unless compartmentation exists the gas (e.g. CO2) will not be able to concentrate
  • Unless the gaseous contents exists in sufficient designed amount, extinguishing will not occur
  • The pipework and flanges must be tested to be free of corrosion-generated particulates which block the nozzles and must be tested to be able to withstand the shock of gas discharge on actuation

 

What measures should be taken?

Fire protection on board is not unlike fire protection in buildings: If a fire breaks out and is not quickly brought under control, all that is left is a ruined shell, fit only for the wrecking ball. In turn, in the case of ships, a total write-off. To better protect the cargo on container ships, with a value running into many millions, it makes sense to modernize the on-board facilities for containing and extinguishing fires.”

There is a call to respond to regulations with a rigorous attitude, to go above and beyond, to provide security of life and infrastructure.

Currently, there is a failure to protect the lives of the crew. Ensuring the safety of the crew is not an option, it is a requirement.

What is the solution?

The crew must take responsibility for its own fire protection.

 

Using an ultrasonic liquid level indicator is the only way that the crew can safely test their CO2 without disturbing them. Coltraco Ultrasonics designed the Portalevel® MAX Marine & Portamarine® ultrasonic liquid level indicator, as radioactive units were being phased out. If shipping companies implemented the IMO SOLAS FSS codes by testing safely and quickly (just 30-60 seconds per cylinder) by using liquid level indicators and marine servicing companies were able to do their work without allowing for time pressures, then vessels would be far safer.

Solutions for the monitoring of the vessels gaseous extinguishing system exist:

  • Portalevel® MAX Marine liquid level indicators used by the crew weekly to test for contents
  • Portasteele® Calculating fire suppression agent weight CALCULATOR converts the liquid level readings into a weight measurement, logging the recorded data with easy exporting via email. By reducing time needed for reports, more time can be spent on ensuring the safety of the vessel.
  • Portascanner® WATERTIGHT, watertight integrity test indicators used by the crew to test for compartmentation
  • Portapipe® pipework integrity indicators used to test for pipework obstructions and the Portagauge® thickness gauges for pipework corrosion

Request a Quotation

Online Submission

Click Here

Call: +44 207 629 8475

Our customer support line is open during UK
business hours
Mon-Friday, 9.00am - 5.00pm GMT

Email: sales@coltraco.co.uk

Enquire via email and a dedicated
member of the sales team will deal
with your request personally.

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
Ok