Blog

Coltraco Commitment To :

  • Through-life maintenance support
  • We still maintain units built 20 years ago
  • Extend trade-in credits - replace old units for new
  • UL listing & ABS type approval - Portalevel™ MAX
  • ABS type approval & RINA approval - Portascanner™
  • Be a life-safety technology partner – Permalevel™
  • Certified OEM calibration & ODA service stations

Coltraco manufacture Ultrasonics That Work

Fire & Explosion: A constant threat to miners

Fires and explosions pose a constant threat to the safety of miners and to the productive capacity of mines. Mine fires and explosions traditionally have ranked among the most devastating industrial disasters. The prevention and control of fire and explosion in mines is fundamental. On a mine site, fire hazards may occur in and around process plants, underground conveyors, static and mobile plants, draglines, workshops, substations, monitored control rooms and switch rooms. All mines have highly expensive and mission critical equipment that typically operate day and night under extreme hostile conditions, in vast, remote and difficult to access environments, especially on underground equipment. In many cases non-gaseous and gaseous fire suppression systems are the preferred systems installed to protect the high value assets, safeguard operators and processes so as to guarantee business continuity. However, it can be argued that the competitive nature of the free market places great pressure on the fire industry to deliver systems which minimally comply with, rather than exceed, the regulations. Too often fire protection is seen as a cost - not a vital investment for business continuity. High value assets such as critical mining infrastructure, may have catastrophic results in the event of downtime or shutdown due to fire. The risk far exceeds the risk of choosing minimal compliance, instead of advanced real-time monitoring systems. The cost or damage to reputational integrity as a result of this downtime far exceeds the cost of integrating a real-time monitoring system.

CASE STUDY: ultrasonic technology offers quick, safe & reliable solutions

The importance of ultrasonic technology to the mining industry has been demonstrated by its use thus far. NRG Energy have been using the Portalevel™ Max since 2015 at the Morgan Town Generation Plant in Morgantown, Charles County in Maryland, US. The Morgan Town Plant is a coal powered power station based in Maryland. NRG own the USA’s largest and more diverse power generation competitive portfolio. NRG are dedicated to smart and reliable energy sourcing, and emission reductions although coal is a significant part of the electricity generation. The Portalevel™ Max is an example of the technologically advanced techniques that the company are implementing to lead the way in safe and sustainable coal sourcing. After witnessing fire service experts undertaking ultrasonic liquid level indication in just minutes, they were keen to change from their previous method of weighing. As a safety critical asset, the Morgan Town Plant saw the necessity in investing into their fire safety. This was the same as at the Vales Point Power Station at Delta, Australia. The power station is at the southern end of lake Macquarie. This power station was built in the 1960’s as a four-unit station, but now operates two 660 MW generating units. The Power Station is owned and operated by Power International, with the capacity of around 1,320 megawatts, providing 24 hours electricity. In 2013 they bought Coltraco Ultrasonics’ Portagauge® 3 thickness gauge for testing normal structure and stainless steel.

How to inspect liquefied gaseous systems with ease and speed

Utilising ultrasound technology, Coltraco Ultrasonics have been manufacturing a range of ultrasonic portable liquid level indicators known as the Portalevel®. The Portalevel® MAX is the latest generation of the Portalevel® line and is designed to provide enhanced speed, operation and performance, especially for high intensity testing requirements and works brilliantly for testing cylinder contents of fixed fire extinguishing systems like CO2, NOVEC™ 1230, FM-200™ and other clean agents. The device has UL, RINA and ABS Type Approval, building further on their history of over 27 years manufacturing this equipment and showcasing the commitment to the marine and shipping industry. The Coltraco Safesite™ technology suite includes Portalevel ® MAX; a “world leading handheld ultrasonic liquid level indicator for testing most common extinguishing agents”; the Portasteele™ Calculator tablet based app converting the liquid level into agent weight/mass with ease, simplicity and ability to log the results; and the Permalevel ® Multiplex for 24/7, 365 autonomous, continuous monitoring of fire suppression systems, with remote relay, remote diagnostics and alarm capability to alert in case of agent leak/discharge.

How to constantly monitor liquefied gaseous extinguishing systems 24/7

Permalevel® Multiplex is the first system worldwide that is capable of monitoring the liquid level of critical fire suppression cylinder systems on a constant basis. It gives a facility total visibility on the real-time status of all their critical fire systems. Modern fire suppression systems have transformed industry safety across all sectors. However, the development of their servicing and monitoring equipment has remained stagnant, with many very advanced systems relying totally on annual inspections, or on unreliable mechanical pressure gauges. These methods leave the status of fire suppression systems completely vulnerable between annual checks. The Permalevel Multiplex® is designed to ensure that fire suppression systems are always fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event that it is required for use 24/7 remote access to system status – enables the operator to monitor each cylinder point in real time. The ability to retrofit into existing systems which eliminates downtime as the system does not have to be disconnected/deactivated provides ease and simplicity to be installed across hundreds of cylinders present in a particular site.

How to test Room Integrity

Where Portalevel® and Pemalevel® deals with the clean agent contents, Coltraco Ultrasonics has also designed and manufactured a device to monitor the enclosure integrity at which the clean agent discharges into. Prior to the installation of a clean agent extinguishing system, fire installers are required to determine the enclosure’s “hold time” in order to comply with regulations such as BS EN ISO 14520 and to ensure the enclosure is able to contain the released clean agent for a sufficient period of time in order to extinguish fires. This relies on the identification of leak sites within an enclosure and subsequently sealing them to improve the “hold time” when necessary. Coltraco Ultrasonics manufactures the Portascanner™ 520 which comprises of an ultrasound generator and ultrasound receiver whereby the ultrasound generator is left in an enclosure and the receiver is used to scan the enclosure seals to identify leak sites. This allows effective identification of leak sites and overall contribute to an increased reliability of a clean agent fire suppression system. A semi-permanent option is also available to monitor leak sites continuously, typically in old, grade listed buildings whereby protection from fire is of absolute importance.

Conclusion: Safesite® fire safety solutions Coltraco Ultrasonics is a company that demonstrates their commitment to developing and supporting safety systems and test equipment with their customer and the end application in mind, founded on science and pursuit of mathematical justification such as their practice to precisely cite accuracy i.e. they achieve +/-1.5mm level of contents accuracy and identify leak sites as small as 0.06mm +/-0.02mm. This is a key contribution the company makes to the industry over their competitors, backed up by 30 years’ experience, operating in 108 countries and life-time customer care.

How can smart technology allow you to reach the Safeship

The crew have a responsibility to implement the regulations via regular testing, which enabled through smart ultrasonic technology and IoT, should be done continuously to avoid negligence and unnecessary risk. Misunderstanding exists across parts of shipping industry regarding the application of a part of the IMO SOLAS FSS Code: the need for crew to test the contents of their CO2, FM-200® & NOVEC™ 1230 Gaseous Extinguishing Systems in between the periodic inspection, maintenance and certification intervals. These periodic inspections are conducted annually or biennially, and only by an Accredited Service Agent i.e. an external Marine Servicing Company. The reason IMO requires crew to test for contents in-between these is that the “ship sails alone” and “there is no such thing as a small fire at sea”; it must act as its own emergency fire service, differing to a land based asset. In order to create a Safeship® the crew must be in full understanding of the status their safety systems at all times and not just at the times of the inspections – achieved by continuous monitoring.

Gaseous extinguishing systems must be able to actuate, or release their gas, in the event of a fire. Given that the gaseous systems are designed specifically to the individual need of the vessel, and it is known that they leak, then a 5% loss of agent may mean that they would not fully extinguish the fire. These are pressurised systems, so the point of monthly checking for contents is to identify loss of contents through leakage or accidental discharge before they fall below their capacity to extinguish (technically described as: delivering their design concentration). Only having the annual inspection by accredited marine servicing companies is not enough – the crew must take responsibility for its own fire protection and inspecting the gaseous extinguishing systems. But what if there is leakage in between these monthly checks?  With fewer, even lower-skilled crew and a greater dependence on autonomous machinery, the dependence on fire systems being checked from shore, let alone on the ship in person, will only become greater. Manual weighing is not only laborious, but also dangerous to the crew conducting the servicing. New technology allows ship owners and crews to help them both the spirit and letter of the regulation and thus know that their vessel is protected in the event of a fire.

Smart technology provides the crew and ship owners with ease of inspection and understanding their extinguishing systems. However, the crew will not be able to refill the gaseous extinguishing system, and instead must rely on notifying the marine servicing company when they arrive at a port, despite the fact that they may only be at the port for a very short amount of time. Due to time pressures, the risk of not being able to find a contractor in time to fill the cylinders in the event of leakage is one that could jeopardise the safety of the entire ship when it is time to set sail. Furthermore, it is well known that vessels are kept at the dock for a minimum amount of time, which reduces time for repairs and thus efficiency without compromise of safety is key. Continuously monitoring the cylinders with ultrasonic sensors that utilises IoT can avoid this, because the network contribution. Using IoT enables the advance notification of the crew and shore based services whilst at sea. Therefore, preparations to address the issues can be made prior to docking to ensure the issues are resolved given the minimum time they have. By having the ability to understand the contents’ level of their gaseous extinguishing systems whilst at sea, the crew are also able to comply and exceed the IMO SOLAS FSS and ISO 14520 regulations, whilst ensuring the Safeship®.

How do you measure liquid level with the Portalevel® MAX?

The Portalevel® MAX has been specifically designed to be as easy, simple and definitive for a user to operate as possible. Simple touch buttons now operate the controls and a new digital screen provides clear and definitive results to the user. The 7 steps below outline the simple testing process. Further technical support for this ultrasonic leak detector is available to all users for the lifetime of the equipment if required.

How to operate Portalevel Max by Coltraco?

  • Attach the sensor to the main Portalevel® MAX, switch the unit on and ensure the “Battery Low” Indication is not showing.
  • Depending on the condition of the cylinder, some couplet may need to be applied to the side of the cylinder; this could be in the form of Water spray, Ultrasonic Gel or an Oil & Water mix depending on what is easily accessible. This is not always essential and they all accomplish the required results.
  • Place the senor towards the top of the cylinder and engage the “CAL” feature. This will set the unit to that particular cylinder, catering for the material thickness, paint or surface covering.
  • When engaging the “CAL” feature, the Bar Graph on the screen will extend all the way to the right and the numbers will read high values.
  • The user should then move the sensor down the cylinder in small steps, making sure not to drag the sensor down the cylinder face.
  • When the sensor passes the level mark, the numbers will drop dramatically and the Bar graph will reduce all the way to the left. It is this change in display readings, which identifies the difference between Air (above Level) and Liquid (below Level) in a cylinder.
  • Through moving the sensor up in smaller steps, one can accurately pinpoint the exact liquid level location.

Portalevel Max 8th Generation
This liquid level indicator is designed primarily to meet your measuring requirements of liquid levels enclosed in cylinders. See the brochure here: via PDF

The main cause of vessel loss is sinking

As the main cause of vessel loss is sinking, the maintenance, testing and monitoring of watertight hatches, doors and multiple cable transits on vessels is essential. A watertight hatch cover is designed to prevent the passage of water in either direction under a head of water for which the surrounding structure is designed.  Many mariners may think hatches are robust, monolithic structures, thereby failing to appreciate the small tolerances on panel alignment and gasket compression. It is better to think of hatches as complex, finely-made structures, to be handled with care. All types of seals, experience dynamic stresses as part of their operational lifetime. For example, 4mm wear on the steel-to-steel contact is sufficient to damage rubber sealing gaskets beyond repair; 5mm sag along the cross-joint can cause a large gap between the compression bar and gasket. The importance of continually maintaining seal integrity should take a more prominent position in ship maintenance scheduling.

The future of watertight integrity testing is with continuous monitoring. A lack of proper servicing of seals can lead to deterioration which endanger the lives of the crew, vessel and cargo.  The large issue here is that ships are only tested before and after one or perhaps several journeys; yet a leak could occur at any point in between testing and continue unnoticed until the next inspection. A vessel generates its leak sites due to load states, sea states, wind states, and dynamic movement. The severity is amplified within a vessel structure constantly changing by varying sea, wind, load states, cargo types and dynamic stresses. There is a great deal of bending and deformation that naturally occurs in ships during travel. It was found that a comprehensive, autonomous continuous monitoring system for the watertight integrity of a ship’s cargo hatches, weathertight doors and other seals is possible to be developed. One that is capable of automatically detecting emerging leak sites, alerting officers and crew of the location and severity of the leak site and logging all data for future review. The developments in continuous monitoring technology being undertaken by Coltraco Ultrasonics will drive the industry towards ensuring that watertight integrity is never left to chance.

The case study of the Emma Maersk exemplifies the danger of improper servicing. A severe leakage occurred on the container ship in February 2013 when it was loaded with 14,000 containers. The leakage was caused by the mechanical break-down of a stern thruster, creating the shaft tunnel to flood, as well as leading to severe ingress of water in the aft part. This led to flooding of the main engine room. This was caused by non-effective cable penetration sealings: in a sudden blast, four cable penetration sealings in the watertight bulkhead gave way to the water pressure followed by a massive ingress of seawater. Shortly after this, the other three cable penetration sealings also failed, resulting in an even larger ingress of water into the engine room. This led to approximately USD 45 million worth of damages and towage cost.

Permalevel® MULTIPLEX – 24/7 365 days monitoring fixed fire extinguishing systems

The Permalevel® Multiplex is the only continuous monitor of fixed fire extinguishing systems. The applications span across the fire, nuclear, electricity and gas and oil production, data storage, telecommunications centers and defence sectors.

Permalevel® is an advanced constant ultrasonic liquid level indicator. It is the easiest and simplest way to assure the appropriate level of liquid within the verified containers.

Features of Permalevel Multiplex

This system is a constant  ultrasonic liquid level indicator. Check them out!

Multiple Alarm Options:
A Master Alarm output. The multiplex has an RS232/485 output allowing communication with a central monitoring system or PC.

Status of Each Channel Shown by LEDs:

The set of green and red LED lights indicate the status of each cylinder.

Text/ Email Alerts:

Provide an instantaneous and convenient form of data communication.

Uninterruptable Power Supply:

Backup system provides power in the event of mains power failure.

Data-logging Ability:

The software keeps logs of the system activity, errors and alarm trigger on a monthly basis.

Strong Magnets:

Hold the sensors in place with additional space for adhesive or a strap to ensure sensors are not accidentally removed.

Sensors:

Each monitoring point has its own dedicated sensor, which is connected to the cylinder it is monitoring.

Remote Real-Time Monitoring Screen:

Displays information about the current status of the cylinders, and when last contact was made.

Compatible with Multiple Cylinder Types:

Each channel can be individually tuned therefore each cylinder can be different from the last in size, weight, pressure and agent type.

For further question or to place an order, contact Coltraco.

What are the Distress® and db levels of the Portamonitor®?

Coltraco’s Portamonitor® is a sophisticated AE device that combines Distress® and db levels that provides a real-time evaluation to give the user accurate knowledge of any defects that may be present in any kind of bearing, for example; roller and ball types. Sound generated by friction and impacts caused by poor lubrication or bearing damage propagates as a stress wave, detectable by the Portamonitor®.

Signal is processed at sensor level allowing quick and effective diagnostics. The Portamonitor® can be used for pre-service (proof) testing as well as in-service (re-qualification) testing and condition monitoring. 

What are Distress® and db level?

Together Distress® and db level help diagnose defects at sensor level by providing simple alert indications relating to phenomena occurring at the defect location. Generally speaking, Distress® provides an instant indication of the health of the bearings. It measures the transient activity, such as impacts, friction and surface deformation caused by micro-pitting and fractures.

The overall measurement is the summation of abnormal signals generated by defective bearings. Elastic waves that are produced as a result of cracks, fractures or debris produce different frequencies. Algorithms inside the Portamonitor® sort this data for comparison against acceptable limits categorised by a number.

The display on the Portamonitor® will show a numeric value indicating the level of distress, for instance: 5-10 indicates the system in “OK”. Between the value of 10-15 indicates the system is “SUSPECT”, and requires further monitoring, whereas >15 indicates a “POOR” system and requires attention. To help with this understanding, the following chart shows simulated example results and a description of what can be immediately determined:

Looking at this data an operator can determine that gearbox No. 1 and 5 need further investigation, with 5 being the priority since gearbox 1 is SUSPECT, but gearbox 5 is POOR. It may be the case that lubricating a bearing may show a decrease in the Distress® value to an acceptable level thus avoiding a shut-down period. This can be determined at this point.

In use alongside Distress®, db level indicators are used which show the overall bearing noise. This is dependent on rotating speed and will increase as rotating speeds increases, but will also increase during the degradation of bearings, or if inadequate lubrication is present. Decibel indicators work on a logarithmic scale, which basically translates very large or very small numbers into a more intuitive form, usually between 0 – 100. Sharp increases in db level indicate imminent failure. Also, db trends can be monitored to establish the overall condition of bearings. Again, to show this we look at some example data to the right.

The trend of db level with time is particularly useful for indicating the rate of deterioration. As can be seen on this chart. This increase in db level over time indicates a serious problem prevailing. Most of the complicated post-processing has been completed within the device making it very easy to understand. Both of these parameters are included simultaneously on the Portamonitor® providing a time and cost effective all-around simple to use device suitable for the monitoring of bearing degradation in all industries. 

Portalevel® Max Nippon: Produced for Japan

Through exploring the Japanese Fire Protection market in detail in our country partners, several unique requirements were identified to properly serve the local customer base. As a result of this, a specially adapted unit was created, allowing customers to take advantage of the 8th Generation Technology, in the form optimized for specific tailored local requirements. Thicker, more power absorbing Japanese made a cylinders demanded a specially tailored calibration capability and increased power output. This offers customers the usability of the Portalevel Max technology even on the more challenging applications. It is considered to be the 7th Generation of Portable Ultrasonic Liquid Level Indicator named to be Portalevel Max Nippon.

Features Provided By Coltraco

You can avail mentioned below features along with lowest ultrasonic level indicator price. Coltraco has an impressive record of facilitating customers with reliable, efficient and high quality services. So, give a look to some of the features it offers with Portalevel Max Nippon!

  • Three years warranty
  • Lifetime Support
  • Specially designed for Japanese Market
  • Fast Operation
  • Service a cylinder in under30 seconds
  • Not radioactive
  • Ultrasonic clean technology
  • Class Approved
  • Accurate to 1.5mm
  • Measures multibank rows 2-4 deep

You can browse through other Portalevel Product Range as well.

Capable and Reliable: Portamarine®

The Portamarine has been specifically designed to meet the needs of the shipping industry and has proven a capable and reliable unit over many years. In use with many thousand Vessel and Marine service stations worldwide, it is specifically designed for safely, quickly and accurately inspecting marine CO2 fire suppression systems. It allows vessel owners to comply with IMO SOLAS requirements which specify the need to have the means onboard to allow crew to safely inspect the fire systems. The Portamarine® has been specifically designed for testing multi-banked CO2 Cylinder Fire Suppression System Cylinders, stored in 2, 3 or 4 rows deep, to make the process as quick as possible to complete. It can also operate on the vast majority of other fire system agents including FM200™, NOVEC 1230™, Halon (for Defence applications) and all other clean agent systems.

Coltraco Ultrasonics has produced this liquid level indicator specifically to meet the corresponding needs of Marine Industry. The equipment is fully Classification Society Approved, accurate to +/-1.5mm and proves a significantly safer and quicker solution when compared to weighing as a means of identifying cylinder content.

Optional Extras with Portamarine® – Ultrasonic Level Indicator

Additional Sensors

  • Wet Sensors – For rugged applications such as poor conditioned or rusty cylinders
  • Dry Sensor – For Standard Applications

Portatherm™

  • Infrared thermometer providing quick indication of ambient temperatures

Ancillary Parts

Multi-Banked Extension Rod

  • Standard Rod – 28mm wide, normal build. Ideal for vast majority of applications.
  • Slim line rod – only 14mm wide and lightweight, ideal for where cylinders are tightly packed.

Gas Monitors

We also provide a wide range of Portable Gas Monitors when required.

After Sales Support

By purchasing the Portamarine® from Coltraco you can be assured of our full support to ensure you become a confident and competent user. If ever you require additional support or would like a Telephone Teach-In from one of our Technical Team please call +44 1761 241 601 or email This email address is being protected from spambots. You need JavaScript enabled to view it.

For further information, download PDF

Test corrosion the smart way: true metal readings

The Portagauge®ultrasonic thickness gauge of units can easily be adapted to a variety of different roles and requirements.

  • Lifetime Support
  • Designed for Corrosion testing
  • Three years warranty
  • Ignored paint layer
  • 50 hours battery life
  • Ultrasonic technology
  • 225MHz probe included as standard
  • Accurate to 0.1mm off the true liquid level

Specifications of Portagauge 4®

  • It measures the true metal thickness, excluding coating and paint thickness.
  • Ideal for most common thickness gauging applications onboard ships by marine superintendents
  • This device is applicable for bridges, pilings storage tanks, lighting columns, ship hulls, bulk heads, pipe work, steel/stainless steel, cast iron, aluminum, copper, brass, zinc, quartz, glass, PVC, poleythyience, grey cast iron amongst others.
  • Automatic Measurement Verification System (AMVS) ensures only true measurements are displayed by checking a minimum of three echoes each time the ultrasound pulses through the metal Intelligent.
  • Probe Recognition (IPR), which automatically adjusts settings in the gauge at the same time as transmitting recognition data large colour.
  • LCD Display giving user information. Single crystal soft faced probe protected by a membrane.
  • Easy calibration with menu driven buttons echo strength indicator.
  • No zeroing required as all sensors use a single crystal which means that no specific alignment is required when measuring on curved or rounded surfaces.
  • User friendly with soft- molded rubber surround which is also comfortable to hold and provides extra protection.

For further information, download PDF

Continuous Monitoring is Essential

Continuous monitoring is no longer an option; it is essential for the protection against special hazards in critical infrastructure. Clean agents are designed to operate in limited spaces where there is a need for speed of suppression given the asset risk and where the space is occupied by people. They deliver the infrastructural resilience our advanced society requires. The assumptions in the installation, commissioning and maintenance of gaseous extinguishing systems is that they are highly pressurised but risk leaking and discharging. ISO 14520 specifically guides our industry as to these risks; In 9.2.1.3 The storage container contents shall be checked at least every six months as follows. : a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced. b) Non-liquefied gases: for inert gas agents, pressure is an indication of agent quantity. If a container shows a loss of agent quantity or a loss of pressure (adjusted for temperature) of more than 5 %, it shall be refilled or replaced. Therefore, at a standards level it is known that gaseous systems can become ineffective through accidental discharge and leakage and thus they do not serve to protect the critical infrastructure in such a case. To know the contents, you need to monitor it, and checking it every 6 months is not monitoring it.

 Should we not just constantly monitor all of them and be in full compliance to the regulations and the risks that are so clearly described in our own core standards? If it is known and accepted that these are dynamic systems that are prone to leaking, but they are expected to deliver resilience and protection, then why are they left unattended for 6 months of the year? We would not do the same to an alarm system without monitoring it 24/7, so why are we not monitoring gaseous extinguishing systems? Let us apply 21st century science to a 100 year old issue and be done with it. A dynamic system needs monitoring. The neglect of continuous monitoring of the fundamental protection provided by the gaseous extinguishing systems is to the peril of the lives of occupants of the premises and at the risk of crippling financial loss to the facility comprising the critical infrastructure. To ensure that dynamic gaseous systems are protecting critical infrastructure in a safe and diligent manner, 6 monthly monitoring and maintenance is no longer enough. There is a call for continuous monitoring and this is something that cannot wait any more.

Protect your facilities with the Permalevel® MULTIPLEX

To create the Safesite®, more faciliites are moving to increasing sensor remote monitoring 24/7, 365. Fire alarms are largely linked up but there is a gap in the fire extinguishing systems which actually suppress the fire event. Now is the time to introduce smart technology. Permalevel® MULTIPLEX is designed for just this reason to protect facilities and their personnel. 

Using smart ultrasonic technology, Permalevel® MULTIPLEX continuously monitors fixed fire extinguishing systems for leaking agents, 24/7, 365 days a year. With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an interruptible power supply and remote real-time monitoring, Permalevel® MULTIPLEX offers the efficiency that is now a requirement for encompassing protection.

Implement an holistic approach: check compartmentation

Coupled with the danger of leaking agents, room integrity is often an overlooked aspect of a suppression system installation. Room integrity requires that in the event of a fire, the released fire extinguishant must meets the sufficient “Hold Time”, in order to properly extinguish fires. Buildings age and their internal use changes and because of this,  leak sites develop.  The likelihood of the gaseous system effectively extinguishing the fire gets lower and lower as the protected area becomes larger than the size that the extinguishing system was designed for.

Coltraco Ultrasonics have provided a smart solution for quick and easy assurance of compartmentation and leak detection. The Portascanner® 520 ultrasonic leak detector uses ultrasonic technology to not only pinpoint precise leak locations, but to determine their leak size as small as 0.06mm with a tolerance of +/-0.02mm, and is proven the most mathematically accurate device for this function.

Solution?

With the continuing developments in smart ultrasonic technology, comprehensive fire safety measures are available to plant owners and facilities managers that are easy to use, affordable and an essential addition to any fire safety management system.

Comply with the IMO SOLAS FSS Code: Portalevel® MAX Marine

Misunderstanding exists across parts of Shipping regarding the application of a part of the IMO SOLAS FSS Code; the need for crew to test the contents of their CO2, FM-200® & NOVEC™ 1230 Gaseous Extinguishing Systems in between the periodic inspection, maintenance and certification intervals. These periodic inspections are conducted annually or biennially, and only by an Accredited Service Agent i.e. an external Marine Servicing Company. The reason IMO requires crew to test for contents in-between these is that the “ship sails alone”; it must act as its own emergency fire service.

IMO SOLAS FSS Code Chapter 5 Fixed gas fire extinguishing systems :,

2.1.1.3 Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the containers. It shall not be necessary to move the containers completely from their fixing positions for this purpose.

ISO 14520-1 : 2015 Gaseous Extinguishing Systems   and some key extracts from it follow for your general interest :

The assumptions in these are that gaseous extinguishing/suppression systems must be checked for 5% loss of contents against the risk of leakage or accidental discharge. The regulations that underpin the pursuit of them support their leak identification every 6 months.

To ensure mitigation of the risks posed by unsuccessful discharge of marine fire extinguishing systems, a cheap and effective solution is to apply the IMO SOLAS FSS code by using innovative technology to ensure that the crew can test the contents of each CO2 cylinder in less than 30 seconds as part of routine maintenance. Gaseous Systems are highly pressurised at 49Bar or 720 psi and can leak as they exist in a dynamic state. Anecdotal evidence suggests that 20% of cylinders aboard ships are partially empty or empty. Portalevel® MAX Marine is an  8th generation hand-held ultrasonic liquid level indicator from Coltraco Ultrasonics with ABS Type Approval. This core product centres the Engine Room Firecheck package. Many people are still unaware of this method for testing the fixed fire extinguishing systems on-board vessels and instead rely on the traditional method of weighing or neglect to test the contents of ships CO2 systems until the annual certification check by shore-based contractors

The Portalevel® MAX in 7 Simple Steps

The 7 steps below outline the simple testing process for the Portalevel® MAX. Further technical support is available to all users for the lifetime of the equipment if required.

  • Attach the sensor to the main Portalevel® MAX, switch the unit on and ensure the “Battery Low” Indication is not showing.
  • Depending on the condition of the cylinder, some couplet may need to be applied to the side of the cylinder; this could be in the form of Water spray, Ultrasonic Gel or an Oil&Water mix depending on what is easily accessible. This is not always essential and they all accomplish the required results.
  • Place the senor towards the top of the cylinder and engage the “CAL” feature. This will set the unit to that particular cylinder, catering for the material thickness, paint or surface covering.
  • When engaging the “CAL” feature, the Bar Graph on the screen will extend all the way to the right and the numbers will read high values.
  • The user should then move the sensor down the cylinder in small steps, making sure not to drag the sensor down the cylinder face.
  • When the sensor passes the level mark, the numbers will drop dramatically and the Bar graph will reduce all the way to the left. It is this change in display readings, which identifies the difference between Air (above Level) and Liquid (below Level) in a cylinder.
  • Through moving the sensor up in smaller steps, one can accurately pinpoint the exact liquid level location.

To know more about Portalevel Max 8th Generation, download PDF

Don't be passive about active fire protection

After a year of Coltraco Ultrasonics’ continued efforts to make the ‘ungoverned space’ in the fire industry heard, understood and actioned upon, the problem is starting to be recognised by some, but not all. This haphazard approach is dangerous and often unknown to the users of the infrastructure. The ungoverned space in the fire industry must end now. You might have heard of it, but now it is time to do something about it.

Simply put, the ‘ungoverned space’ is the area in the fire industry where either the regulations or the protecting systems of the critical infrastructure are not effectively providing consistent and reliable safety. Coltraco repeatedly push for this life-threatening issue to be dealt with, with specific regard to loss of contents in fixed fire extinguishing systems.

Gaseous extinguishing systems protect urgently important infrastructure against special hazards, fundamental for the safeguarding of critical facilities.

Although many in the fire industry work towards meeting better standards, in their experience, Coltraco have numerous concerning anecdotes of non-compliance: systems portrayed and installed by contractors as NOVEC™ 1230 but filled with sand or water… room integrity testing with questionable results and with the room integrity remaining un-monitored after testing… liquefied extinguishants being confused by installers with Inert gas systems… service engineers asking how to test the liquid level in powder… the list goes on.

Coupled with these anecdotes, currently the regulations are not extensive enough to deal with the risks presented in gaseous systems. In 9.2.1.3 the regulations explains that the storage container contents shall be checked at least every six months as follows. : a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced. b) Non-liquefied gases: for inert gas agents, pressure is an indication of agent quantity. If a container shows a loss of agent quantity or a loss of pressure (adjusted for temperature) of more than 5 %, it shall be refilled or replaced. Essentially, it is known in regulations that the gaseous systems leak and need to be maintained. Given that the gaseous systems are designed specifically to the individual need of that room, building e.t.c, a 5% loss of agent may mean that they would not fully extinguish the fire.

Can one annual check account for the probability of discharge and leakage for the other 364 days of the year between certification checks?

No.

The neglect of continuous monitoring - of the fundamental protection provided by the gaseous extinguishing systems - is to the peril of the lives of occupants of the premises and at the risk of crippling financial and reputational loss to the facility comprising the critical infrastructure.

The examples of where continuous monitoring are essential are many, extensive and varied. If you protect critical infrastructure, then this article applies to you.

However to exemplify the integral nature of continuous monitoring; incidents in nuclear power plants around the world have continued to demonstrate the vulnerability of safety systems to fire and its effects. The potential danger from an accident at a nuclear power plant is exposure to radiation to the people in the vicinity of the plume from the cloud and particles deposited on the ground, inhalation of radioactive materials and ingestion of radioactive materials. The International Atomic Energy Authority state clearly in the Fire Safety in the Operation of Nuclear Power Plants standards that the effects of a single failure in fire safety systems, such a system not performing its required function, can be detrimental. With fires at nuclear power plants still occurring, such as the technical issue which led to a blast at the 2017 power plant at Flamanville, deemed “very serious” by industry experts, the call for advanced technology is of most importance.

Focused on continued advancement of safety technology, Coltraco have now developed the Permalevel® Multiplex, a fixed fire suppression monitoring device, designed for permanent contents verification. The Permalevel®  Multiplex    is  designed  to  ensure  that fire  suppression  systems  are  always  fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event of a fire at a nuclear power plant.

The application of the Permalevel® reaches further, with customers using this equipment in alternate specialist and confidential manners to ensure safety in the station. With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an interruptible power supply and remote real-time monitoring, the Permalevel® offers the efficiency that is now a requirement for encompassing protection. The likes of the Atomic Energy Authority asked Coltraco Ultrasonics to tailor make them a solution to constantly monitor a special application using the Permalevel® Single Point for over 10 years.

There is no use in waiting or denying the problem, continuous monitoring and Safesite technologies must be adopted now. Technological development is inevitable and that can’t wait for regulations any longer. We will not stop until the ungoverned space is fully recognised and dealt with. There is no room for the industry to fall back into old habits. The ungoverned space must be recognised, the science is clear and it shows that the risk to people and infrastructure is real and high. Constant monitoring of gaseous extinguishing systems and must be implemented, people’s lives depend upon it.

Think again. Are you being passive toward active fire protection? If you are, we are here to help you ensure critical safety.

Are annual checks of gaseous suppression systems enough?

Wind power is an exciting emerging sector that needs those of us involved in fire safety to get on board. As electricity generation becomes more reliant on renewable energy, wind power is becoming increasingly important in the energy mix. As our reliance on wind turbines grows, keeping them fully operational and at reduced levels of risk is becoming more important, and as a result, so is safety management. There are over 340,000 wind turbines around the world; yet the vast majority of turbines have no fire suppression system installed.
The fires in wind turbines not only lead to a loss of business continuity and a negative impact on the company’s reputation but also, most importantly, are a critical safety issue. Possibly harmful debris can drift into the wind in the event of a fire and there is also a significant risk to human lives. When turbines are under construction, commissioning maintenance and repair, escape routes for operators are often long and vertical.

A recent report found that three out of six incidents studied involved a human presence in the nacelle*3; hence, a fire becomes a safety concern.  In 2013, a crew of four engineers died in Ooltgensplaat, Netherlands in a wind turbine fire. This devastating loss of life calls for improved review of fire safety to minimise the risk to engineers.

Fire is the second leading cause of accidents in wind turbines after blade failure1.

Most wind farms are in remote locations, and wind turbines are designed with the mechanical portion – where most fires start - nearly 300ft off the ground at the top in the nacelle. There is simply no practical way to respond to a fire in these units, meaning that when one occurs, the typical action is simply to wait for it to burn out.

With the average overall cost of a wind turbine fire being around $4.5m2, and given that $112.5bn was ploughed into wind power globally in 20163, turbine owners – and authorities - are increasingly seeing the prudence of investing in fire suppression.

Since 2011 there have been 36 large wind turbine fire incidents reported in the mainstream media, although the actual number is much higher, with many smaller, less visible fires going unreported. Most recently, in Wyoming in the US last September, a wind turbine blaze caused a wild fire that burned out nearly 1,600 acres.

There are three main causes of wind turbine fires: mechanical failure, electrical malfunction and lightning strikes. These pose a uniquely high risk due to both the turbines’ exposed locations and their height; turbines are now being built in excess of 450ft.

Even a small fire can accelerate quickly in a nacelle that comprises highly flammable resin fibreglass. Internal insulation, which can become contaminated by oil deposits, further adds to the fuel load.

Redesigning the turbines to reduce the fuel load inside the nacelle is one step to reduce fire risk. In addition, any maintenance and repair activities that involve ‘hot work’ inside the nacelle could be avoided. It has also been suggested that condition monitoring systems should be implemented and maintenance checks completed regularly.

As a final step, automatic fire detection and suppression systems can be incorporated to further protect the nacelle, which presents a unique challenge: dust, vibration and temperature fluctuations can all interfere with reliable operation.

There are several types of fire detection available. Smoke detection or air sampling systems can be successful at detecting the early stages of a fire, but may be rendered ineffective by air flows and environment. Alternatively, traditional linear heat detection systems and fusible link detection systems aren’t affected by air and dust but are potentially electrically conductive. Significantly, all these systems will fail if the external power or battery backup fails. 

Then there are the fire suppression agents. Compressed air foam systems and water mist are potentially corrosive and can be ineffective on energized electrical components.

Carbon dioxide systems aren’t ideal because, due to the CO2 displacing the oxygen in the event of a discharge, the fire suppression system has to be ‘locked out’ any time personnel are present in the nacelle. In a working at height situation this is a major safety concern.

The weight of these technologies and the space required to store them can also pose a problem in the cramped environment within the nacelle.

The most common solution today overcomes the above drawbacks by providing component-level automatic systems that offer both fire detection and suppression in a single package. Designed to detect a small fire in or around a critical component, they dramatically improve the response time and reliability while reducing the size of the system required.

These systems use clean agent fire suppression technology involving a non-conductive gas, which leaves no residue following a discharge, requires no clean up, and in small volumes doesn’t present a hazard to personnel.

The presence of an automatic fire detection and suppression system like Firetrace offers 24/7 reliability and unsupervised protection to quickly address a growing fire and limit its damage.

And yet, despite the availability of affordable fire suppression methods, thousands of wind turbines are still being installed without adequate fire protection, and entirely preventable wind turbine fires continue to occur.

There has, however, been increasing momentum over the past few years for legislation requiring fire suppression on new wind farms. A growing list of authorities in Germany, and a number of both local and state governments in the US, are acknowledging that fire suppression is a judicious step to safeguard assets in the event of a fire in a wind turbine. A piece of unique regulation in Canada has taken it a step further, enabling local authorities to insist that fire suppression is retrofitted to existing sites.

This is a welcome trend. Designing in fixed fire suppression, which can contain the blaze within the micro-environment of the nacelle, is a logical move to help prevent large-scale fires.

However, it is important to note that such fire extinguishing systems require maintenance to ensure they are fully operational and ready in event of a fire. ISO 14520-1:2015(E) assumes that these systems accidentally discharge and leak. 6.2.4.2 Contents indication: “Means shall be provided to indicate that each container is correctly charged.” Followed by “9.2.1.3 The storage container contents shall be checked at least every six months as follows. a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced.”

Section 10.5.3.2.2. of the NFPA 850 states that the Maintenance and inspection of total flooding gaseous agent systems and interlocked equipment are critical. All systems at some time may be called upon to operate in an emergency situation and may help in saving life and property. It is for this reason that knowledge must be had that the system can operate to its full potential.

ARE ANNUAL CHECKS SUFFICIENT IN RISKY ENVIRONMENTS?

What if the suppression systems installed in the turbines to protect life and infrastructure do not release on actuation? Gaseous extinguishing/suppression systems are installed to protect against special hazards in critical infrastructure as their key objective. They deliver the infrastructural resilience that wind turbines require. If it is a known fact that there is a long response time to wind turbine fires, then it is unacceptable that the dynamic suppression systems are left unattended 364 days a year.

A CALL FOR CONSTANT MONITORING OF WIND TURBINES

A dynamic system needs monitoring.  The reality is that gaseous systems are checked for contents annually because they are pressurised and anything that is dynamic offers risk of loss of contents, but this fails to deal with the probability of discharge or leakage for the 364 days per annum in the interim between certification checks.

If the hazard is special and the infrastructure critical then this is the case for the constant monitoring of the suppression systems that aim to deliver the protection of them. Inspection should include an evaluation that the extinguishing system continues to provide adequate protection for the risk.

Coupled to this is a complete lack Room Integrity testing after the gaseous system has been installed. As buildings age or their internal use is changed leak sites develop. If the gas cannot be ‘held’ in the room on discharge during a fire event the probability of its suppression diminishes in direct proportion to the size of the leak sites.  Room integrity tests are imperative for the determination of both the hold time and the peak pressure needed for successful fire suppression.

The level of leakage is carefully monitored in order to ensure the correct agent concentration is achieved; room integrity must be ‘tight’ enough to ensure sufficient retention time according to NFPA Standards or ISO 14520, yet remain ‘loose’ enough to prevent enclosure damage at discharge.  The presence of undesired and unregulated leak sites reduces room integrity and will hence dramatically impact the hold time and peak pressure, placing room contents and potentially wall structures at risk.

It is accepted that in wind turbines vibration can loosen connections while dirt, dust, and temperature extremes are known to cause unwarranted discharge. Additionally, openings in the turbine housing significantly inhibit achieving the designated agent concentration. Devising a solution to overcome these challenges can add significantly to the weight in the turbine.

For regular inspection, there are solutions such as the Portalevel® MAX. This handheld ultrasonic liquid level indicator can service a cylinder in 30 seconds (in contrast to 15 minutes by traditional manual weighing) with accuracy of up to 1.5mm off the true liquid level.

Coltraco Ultrasonics provide smart Firetest® solutions that enable wind turbine owners and operators to improve their fire safety management and reduce the risks to human life, business continuity caused by any downtime and thus minimise risk to reputation by delivering a Safesite®.

Fire on Board Ferries

Fires on board ferries can be devastating, to crew, vessel and cargo. There is a call to respond to regulations with a rigorous attitude, to go above and beyond, to provide security of life and infrastructure

Misunderstanding exists across parts of the ferry industry regarding the application of a part of the International Maritime Organisation, Safety of Life at Sea, Fire Safety Systems (IMO SOLAS FSS) Code; the need for crew to test the contents of their CO2, FM-200® & NOVEC™ 1230 Gaseous Extinguishing Systems in between the periodic inspection, maintenance and certification intervals.

IMO SOLAS & FSS Code Chapter 2.1.1.3 - “Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the containers.”

The reason the IMO requires crew to test for contents in-between these is that the “ferries sails alone”; it must act as its own emergency fire service. 

A ferries’s gaseous extinguishing system typically comprises between 200 and 600 cylinders each containing 45KG of CO2 under high 720 psi/ 49 bar pressure. Some marine service companies estimate that 20% of a ferries CO2 cylinders have discharged or partially leaked their contents at some point in their lifetime. Yet although this poses high levels of risk to the service companies and the crew, because gaseous extinguishing systems are highly pressurised, the risk of leaking and discharging is accepted as part of their use and this is shown in the regulations that demand their upkeep.

Using an ultrasonic liquid level indicator is the only way that the crew can safely test their CO2 without disturbing them. If ferry companies implemented the IMO SOLAS FSS codes by testing safely and quickly (just 30-60 seconds per cylinder) by using liquid level indicators and marine servicing companies were able to do their work without allowing for time pressures, then marine safety would be far safer.

Any vessel with a Marine Gaseous Extinguishing system needs to consider 3 factors :

  • Unless compartmentation exists the gas will not be able to concentrate
  • Unless the contents exists in sufficient quantity design concentration will not occur
  • The pipework and flanges must be tested to be free of corrosion-generated particulates which block the nozzles and must be tested to be able to withstand the shock of gas discharge on actuation

Why the industry is failing to comply with ISO 14520

Would you enter a building if you were told as you stepped in that in the event of a fire there was a chance that the extinguishing system wouldn’t put it out because the fire couldn’t be contained?
No! People expect, and rightfully so, that in the event of a fire the extinguishing systems would be in full working order to do just that – extinguish. Given that the gaseous systems are designed specifically to the individual need of that room, building e.t.c, then a leak sites in the room could meant that the comparted area couldn’t withhold the fire.

The likelihood of the gaseous system effectively extinguishing the fire gets lower and lower as the protected area becomes larger than the size that the extinguishing system was designed for. This is not a game of chance. The lives of people depend upon it. Enough is enough. The technology exists right now to support Door Fan Testing in providing a holistic and thorough integrity test of critical infrastructure.

Key Facts

  • Compartmentation = fire stopping e.g. walls and floors
  • Every 7 seconds, a fire breaks out, worldwide
  • 700 fatalities caused by fire in the UK
  • £7bn is the cost of fire to the UK economy according to GovUK: every day £3.4m in costs by business disruption caused by fire - £1.3bn p.a.
  • 44% of all insurance claims are caused by fire
  • SOURCE: Aviva Insurance, 2012

Regulatory Requirements un-Ravelled

APPROVED DOCUMENT B (ADB)

The regulations demand that compartmentation is upheld for the safety of the individuals, who entrust their lives into its integrity. Approved document B, Fire Safety, Volume 2, Buildings other than dwelling house states that: 8.0 Every compartment wall should form a complete barrier to fire between the compartments they separate. 8.35 – any stairway or other shaft passing directly from one compartment to another should be enclosed in a protected shaft so as to delay or prevent the spread of fire between compartments. However, despite regulations best effort to promote the implementation of compartmentation and room integrity, the last review of the Building Regulations Approved Document B was made in 2006 (12 years ago) and its next review was not due to be completed until 2022 (which would then be a gap of 17 years), meaning that the attention that is deserved is often disregarded.

  • ADB B3-4 “the building shall be designed… so that the unseen spread of fire and smoke… is inhibited”
  • Appendix B Breaching fire separation “to ensure effective protection again fire, walls and floors providing fire separation must form a complete barrier, with an equivalent level of fire resistance provided to any openings such as doors, ventilation ducts, pipe passages or refuge chutes.”

ISO14520-1:2015(E)

We will lead with some extracts from the regulations which is why this paper argues that the industry is sometimes minimally compliant or even non-compliant due to a lack of understanding of fire systems and their connection to compartmentation. This paper calls for a more holistic approach to fire safety. The author suggests the need for a resident mathematician to assist the industry.

  • 9.2.1.3 The storage container contents shall be checked at least every six months. a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced.
  • 9.2.4.1 At least every 12 months it shall be determined whether boundary penetration or other changes to the protected enclosure have occurred that could affect leakage and extinguishant performance. If this cannot be visually determined, it shall be positively established by repeating the test for enclosure integrity in accordance with Annex E.
  • 9.2.4.2 Where the integrity test reveals increased leakage that would result in an inability to retain the extinguishant for the required period, remedial action shall be carried out.
  • A.3.2 Engineered systems: need information and calculations on the amount of extinguishant;
  • Annex F - b) Every 6 months: Perform the following checks and inspections: 5) for liquefied gases, check weigh or use a liquid level indicator to verify correct content of containers; replace or refill any showing a loss of more than 5 %;
  • Annex F 6.2.4.2 Means shall be provided to indicate that each container is correctly charged.

The assumptions in these are that gaseous extinguishing/suppression systems do leak. The regulations that underpin the pursuit of them explore their leak identification every 6 months. Gaseous extinguishing/suppression systems however are installed to protect special hazards in critical infrastructure as their key objective. If the hazard is special and the infrastructure critical then this is the case for the constant monitoring of the suppression systems that aim to deliver the protection of them.

To understand how fire resistant a compartment is, an inspection of the overall condition of the existing fire compartments is needed, as well as an assessment of the condition and effectiveness of the sealing of wall/soffit interfaces and an inspection of existing fire seals applied to service penetrations through fire compartment lines. Issues in the quality of compartmentation walls can come from maintenance, minor works and refurbishments. Contractors carrying out such tasks can occasionally destroy the compartmentation integrity of the wall, floor or ceilings if they were unaware that the area is a comparted space (as shown in the below image). Therefore, following maintenance it is “good practice” to ensure the fire resistance of walls, floors and ceilings and to safeguard again if necessary.

Meeting minimum fire standards is not enough

Technology must solve industry problems. Not only to become a successful business in terms of profitability but in terms of sustainability and genuinely offering service to the industry in order to reduce risk, improve safety and hopefully have a small part in saving lives. We have provided a smart solution to quick and easy assurance of compartmentation using ultrasound to detect signal leaking through any apertures within the barriers.

Ultrasonic room integrity testers provide interpretation of the fire resistance of the desired locations, labelling them either airtight or giving an indication of the overall leakage of the room. The advantages of being able to accurately detect the exact leak locations and size are self-evident when considered alongside the resistance to collapse and transfer of excessive heat. In a case where there is too much leakage in a room, the ultrasonic room integrity tester is an unrivalled ideal for the rapid and accurate  identification of these sites so that they can be sealed. It is lightweight, fast and easy to use, allowing leak site detection to increase its operational efficiency and speed to a degree that has never been seen thus far in the Fire Industry.

The technology exists right now to solve this problem.  

In 2018 with the continuing developments in technology there is an expectation that safety should be all encompassing. We cannot let this expectation continue to be a fantasy.

BOX OUT –  Case Study: Oxygen Reduction System - Data Centre, England 2018

Oxygen Reduction System and Need for Monitoring: Oxygen Reduction system works by taking Nitrogen from the air outdoors and pumping this into the room consistently in order to suppress oxygen levels, down to the level where combustion can no longer occur. To ensure the system works safely and efficiently, room integrity is of utmost important for two reasons: (1) A properly sealed room will contain the Nitrogen for a longer period of time, therefore putting less work on the air compressor in order to save energy. (2) If Nitrogen starts to leak from the Server Room, there are safety concerns over where this Nitrogen would leak to as it has the potential to harm occupants in other rooms if the Nitrogen leaks into their room and the oxygen levels were unmonitored.

Testing of the Server Room: The Server Room had an area of about 91 metres square. Several areas were tested with an ultrasonic room integrity tester where leakage was probable and the readings were noted on the drawings. These were the doors, vents, cable penetrations and also sections of the wall where gaps were visible.

Results: The ultrasonic room integrity tester identified the main source of leaks for the room, the doors, where full readings were clearly detected. Multiple air vents in the room were also improperly sealed and some leakage was found into the external room. Cable penetrations leading to the area outside the Server Room were also found to be leaking. 

Conclusions: Once the required maintenance was conducted and assuming no changes were made to the room, it is safe to assume that the room retains its integrity, thus comply and exceed current ISO 14520 regulations requiring periodic inspections of room integrity whereby visual inspection is usually specified and is not sufficient. The most suitable way to address periodic inspections is through the use of ultrasound.

Swedish Club Report: Watertight Integrity

As the main cause of vessel loss is sinking, the maintenance, testing and monitoring of watertight hatches, doors and multiple cable transits on vessels is essential. A watertight hatch cover is designed to prevent the passage of water in either direction under a head of water for which the surrounding structure is designed.  Many mariners may think hatches are robust, monolithic structures, thereby failing to appreciate the small tolerances on panel alignment and gasket compression. It is better to think of hatches as complex, finely-made structures, to be handled with care.

This has been recognised recently by marine insurers. The Swedish Club has released a report warning bulk carrier operators to pay attention to water damage. The 2018 Swedish Club report, Wet Damage on Bulk Carriers, which has been prepared in cooperation with DNV GL, and MacGregor, identifies heavy weather and leaking hatch covers as the most common and the most costly type of wet damage claim. With the average cost for a wet damage cargo claim being almost $110,000, this is alarming.

According to the report, wrongly applied and poorly maintained cargo hatch covers and sealing systems increase the risk of cargo becoming damaged by water. The most common wet cargo problems include leaking cross joints, and compression bars, rubber gaskets, hatch coamings, drain channels and cleats in poor condition.

As stressed in the report, proper weathertightness is a key factor in keeping cargo dry. To ensure that the hatch covers are weathertight the sealing system needs to be in a good condition. 

This is demanded by the regulations: SOLAS Reg II-1/11.1  it states that hatches and watertight seals must be regularly tested: “Where a hose test is not practicable [sic] it may be replaced by [sic] an ultrasonic leak test or an equivalent test. In any case a thorough inspection of the watertight bulkheads shall be carried out.” The importance of continually maintaining seal integrity must take a more prominent position in ship maintenance scheduling.

How have seals been tested traditionally?

Chalk testing is used traditionally for visual inspection of the compression integrity of doors and hatches on vessels that hold the potential for flooding. Chalk is applied evenly around the knife edge, coaming compression bars or panel cross seams of doorways. The door/hatch is then closed and sealed. Once re-opened the rubber gasket which pushes against the knife edge is visually inspected for the chalk line. Any breaks in the chalk line indicate a lack of compression in that area. It must be noted that chalk testing is NOT a leak test, but only provides an indication of potential compression issues

The International Association of Classification Societies states that a chalk test must be followed by a hose test. The hose test is used in conjunction to determine the weather tightness of doors and hatch covers. The spray from a nozzle of 12mm diameter is sprayed from a distance of 1 to 1.5 meters with a water jet pressure of 0.5 ms-1 This test should help identify any leakage from the hatch joints, although the exact location of the leakage sight cannot be pinpointed. Various drawback come with this test, for instance;

  • The hold is required to be empty as cargo can be damaged by water. This is not always possible and certainly poses more issues once the ship is laden with goods. 
  • The test requires drains to be opened posing a genuine pollution risk. 
  • Two people are required to carry out the test effectively. 
  • Cannot be performed in sub-zero conditions.
  • Water pressure and distance can affect results.
  • Time-consuming.

Both of these tests are time-consuming and sometimes completely impractical. Some circumstances have been highlighted that prevent this test from being conducted such as the hose test if dry cargo is within the hold being tested but these tests conducted at port or in dry dock will never reproduce conditions when the ship is at sea and therefore cannot expect to achieve the same standard. Claims resulting from water damage due to leaking hatch covers still contribute a huge part of the overall loss figures on dry cargo ships. This method is neither accurate nor time effective.

The accuracy of results is open to human error. The application of the chalk must be very accurate in order to avoid misdiagnosis. A false application of chalk could be construed as a compression issue.

In fact, the limitations of using chalk and water hose testing have been demonstrated in case studies from the Swedish P&I Club’s Recent Report:

CASE STUDY 1: 

Before loading with grain the cargo hatch covers had passed a water hose test. Once the vessel was fully loaded the cargo hatch covers were then sealed with tape. The cargo was mostly damaged underneath the cross-joints. During the voyage the vessel encountered heavy weather at Beaufort scale 10 with large waves and a swell which covered the hatch covers in water.  A visual inspection of the cargo hatch covers, rubber gaskets, securing devices, valves, ventilators and drainage channels found them to be in order. During the voyage the tape by the cross-joints between the forward and aft hatch panels of two holds had peeled off. A chalk test was carried out and this did not show any imprints on the rubber gaskets. At the discharge port it was found that part of the top layer of the cargo in a number of the cargo holds was damaged by seawater. Further investigation revealed that there was no contact between the compression bars and rubber gaskets on the cross-joint panels. In addition, an ultrasonic test identified that the cross-joints between the forward and aft hatch cover were also leaking. 

CASE STUDY 2:
A vessel had loaded wire coils. After loading was complete the crew taped across the transverse beams of all the cargo holds.  The vessel sailed through heavy weather that lasted for about two days. During this time the vessel was pitching and rolling heavily. The cargo hatch covers were covered in water.  When discharging at the destination port it was found that the steel coils in the top tiers were corroded. The coils below the centre line and folding seams were the most affected.  The surveyor tested the water integrity of the cargo hatch covers with an ultrasonic device which detected significant defects to the sealing arrangements. 

  • The surveyor found the following defects: 
  • The gaskets were in poor condition 
  • The non-return valves were clogged and the ball inside was not moving
    The transverse packing on the hatch covers was leaking
  • There were some cracked corners and leaking
  • The ventilation covers were leaking

How can ultrasound change this?

The Swedish P& I club recommend using Ultrasound. As stated in their 2018 report “A much more effective method is to use an ultrasonic device, which is designed for this purpose and can pinpoint the area which is leaking, and if the compression of the gasket is sufficient. The advantages of using this type of equipment are evident, since ultrasonic tests can be carried out during any stage of the loading without risking cargo damage. The test can also be completed in sub-zero temperatures. The ultrasonic test should be carried out as per the class requirements.” 

Ultrasonic testing is a dramatically more sensitive, accurate and reliable method for testing cargo hatch covers, bulkheads and doors for watertight integrity on all vessels. A multi-directional ultrasound emitter is placed in a hold. The opening being tested is then sealed and the receiver switched on ready to receive any leakage of ultrasound via a set of headphones. An increased reading of ultrasound signal signifies an issue with the integrity of the door/hatch. Further, and closer inspection will allow identification of any specific leakage sight along with the severity. This test will take approximately 10 minutes and requires only one operator. 

Ultrasonics is proven to be the quickest, easiest and most efficient method of testing watertight & weather-tight seals of hatch-covers, doors, multiple cable transits. The Portascanner® WATERTIGHT is the most accurate model of its kind – proven to 0.06mm (+/-0.02mm). This is designed primarily to enhance the ease and accuracy with which critical watertight, airtight or weather tight seals can be inspected for leak sites or areas of reduced compression in the seal. The ultrasound generator emits a modulated signal of a specific frequency of ultrasound (in most cases 40,000Hz). The receiver then picks up the signal and converts it into a result indicating watertight integrity. The easy to use Portascanner® WATERTIGHT allows crew member to check for failing seals whilst at sea which allows for prompt maintenance.  

Coltraco Ultrasonics focus on benefitting the crew; designing innovative ultrasonic solutions which the crew will be happy to use by being easy to operate, quick, accurate and a better method to traditional techniques. Thus increasing the likelihood of tests being regularly conducted, in line with regulations and even going above and beyond for more frequent testing. By so doing, the crew will be creating a safer ship.

Reduce risk to life with the Firetest® package

With the size of turbines increasing, the wind industry needs to learn about the importance of fire safety in wind turbines. Fire is the second leading cause of accidents in wind turbines after blade failure. As our reliance grows on wind turbines, keeping them fully operational and at reduced levels of risk becoming more important, and as a result, so does safety management.  10-30% of all loss-of-power-generation incidents in wind power plants are due to fire. Fires in wind turbines not only lead to a loss of business continuity and a negative impact on the company’s reputation but also, most importantly, are a critical safety issue.

With predictions of much taller and more powerful turbines and thus fewer per project, ensuring that the they are in working order is essential, because the larger and fewer the turbines, the more costly they will be to operators in the event of fire damage. Due to the height and location of wind turbines, classic firefighting methods come up against their limits and therefore fire extinguishing systems that use gases such as carbon dioxide, inert gases or clean agents such as FM-200® and Novec™1230, which are especially appropriate for dealing with fires in electrical systems because they extinguish the fire quickly whilst not damaging the electrical systems or the compartment in which they are being discharged. 

However, it is important to note that such fire extinguishing systems require maintenance to ensure they are fully operational and ready in event of a fire. ISO 14520-1:2015(E) assumes that these systems accidentally discharge and leak. 6.2.4.2 Contents indication: “Means shall be provided to indicate that each container is correctly charged.” Followed by “9.2.1.3 The storage container contents shall be checked at least every six months as follows. a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced.”

Focused on continued advancement of safety technology, Coltraco have now developed the Permalevel® Multiplex, a fixed fire suppression monitoring system, designed for continuous contents verification. Permalevel® is designed to ensure that fire suppression systems are always fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event of a fire. With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an uninterruptible power supply (UPS) and remote real-time monitoring, the Permalevel® offers the efficiency that is needed in a wind turbine.

For regular inspection, the Portalevel® MAX is a handheld ultrasonic liquid level indicator, which can service a cylinder in 30 seconds (in contrast to 15 minutes by traditional manual weighing) with accuracy of up to 1.5mm off the true liquid level. Portalevel® MAX builds on Coltraco Ultrasonics’ 30 years’ experience in designing, manufacturing and supporting ultrasonic liquid level indicating equipment, in 108 Countries and numerous market sectors and environments. The development program was born out of the desire to further improve on Coltraco’s existing 8 designs and taking on board feedback and opinions of our customers.

Coltraco Ultrasonics provide smart Firetest® solutions which enable wind turbine owners and operators to improve their fire safety management and reduce the risks to human life, business continuity caused by any downtime and thus minimise risk to reputation by delivering a Safesite®

Fires Happen: it’s Time to Act.

At sea, fire pose one the of biggest threat to ships: according to Lloyds List, almost 10% of all total losses at sea for the last ten years have been caused by fire. Sailing alone and at sea throughout the year, and without the ability to call upon the emergency services as a land-based asset might. As vessels become larger and more sophisticated, a greater financial interest is tied up into one ship, meaning that the risks are magnified if the vessel would get into difficulties e.g. a fire.

“Ships are their own fire brigade”

Misunderstanding exists across parts of Shipping regarding the application of a part of the International Maritime Organisation, Safety of Life at Sea, Fire Safety Systems (IMO SOLAS FSS) Code; the need for crew to test the contents of their CO2, FM-200® & NOVEC™ 1230 Gaseous Extinguishing Systems in between the periodic inspection, maintenance and certification intervals. These periodic inspections are conducted annually or biennially, and only by an Accredited Service Agent i.e. an external Marine Servicing Company. As stated above, the reason the IMO requires crew to test for contents in-between these is that the “ship sails alone”; it must act as its own emergency fire service

What are the risks?

A ship’s gaseous extinguishing system typically comprises between 200 and 600 cylinders each containing 45KG of CO2 under high 720 psi/ 49 bar pressure. (Other suppressant clean agents such as FM-200® and Novec™1230 are becoming more widely used.) One of the highest probabilities of discharge occurs during their maintenance. Some marine service companies estimate that 20% of a ship’s CO2 cylinders have discharged or partially leaked their contents at some point in their lifetime.

Taking CO2 systems through as an example, although random checks may be suitable in some sectors, it is worth remembering that because the normal design concentration of CO2 of 34-72 v/v % is above the nearly immediate acute lethality level, these systems have an extremely narrow safety margin. As these systems work through oxygen dilution rather than the chemical disruption of the catalytic combustion chain (which is the case with other clean agents), insufficient oxygen levels during an accidental discharge may allow a situation to spiral out of hand.

“CO2 bottles leak”

Yet although this poses high levels of risk to the service companies and the crew, because gaseous extinguishing systems are highly pressurised, the risk of leaking and discharging is accepted as part of their use and this is shown in the regulations that demand their upkeep e.g. IMO SOLAS FSS Ch5. 2.1.1.3:

“Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the container”

Often this is misunderstood, this code specifically states that the crew must test their extinguishing installations in between the periodic inspection, maintenance and certification. Only having the annual inspection by accredited marine servicing companies is not enough – the crew must take responsibility for its own fire protection.  However, what must be noted is that the crew are often not trained or certified to shut-down, dismantle, weigh and re-install the gaseous cylinders – the traditional method.

A Call for Crew to Inspect Fire System Cylinder Contents

Using an ultrasonic liquid level indicator is the only way that the crew can safely test their CO2 without disturbing them. If marine companies implemented the IMO SOLAS FSS codes by testing safely and quickly (just 30-60 seconds per cylinder) by using liquid level indicators and marine servicing companies were able to do their work without allowing for time pressures, then marine safety would be far safer.

Bad industry practice is unacceptable when fire risk may have catastrophic results due to risk to life, downtime in operation due to ship safety and repair work and incalculable reputational damage. The crew, cargo and vessel must be protected when at sea because it is it’s own fire brigade without accessibility to typical emergency services. This is a call to respond to regulations with a rigorous attitude, to go above and beyond, to provide security of life and infrastructure.

The Ungoverned Space of Marine Fire Safety

1. Introduction

Over the last few decades cargo has generally been increasingly transported in containers rather than as open bulk cargo, thus mistakenly leading shipping companies to disregard the importance of fire protection systems, instead focusing on transporting greater quantities facilitated by the container system. However, this outlook is dangerous and misplaced. The risk of fire is significant with growing incidences of fire events exposed in the trade press, posing a risk both to expensive cargo and to human life on-board the ships. With a movement towards autonomous shipping systems and smart-ships, the importance of remotely monitored fire-fighting systems could grow exponentially, providing the opportunity to monitor vessels from an external location. Technological developments and companies such as Coltraco Ultrasonics, are working towards this end goal. The current on-board fire-fighting facilities remain inadequate in the face of the capacity of such large vessels. Fire therefore remains an ever-present risk on the high seas.

2. Economic risks

Traditionally, the maritime industry treats fire protection systems as a necessary expenditure, rather than a means to safeguard valuable crew and cargo and maintain business continuity of the vessel. Owners focus on systems delivered at the most competitive rates rather than seeing fire protection as an investment. The definition of a free market is an idealised form of a market economy in which buyers and sellers are allowed to transact freely based on a mutual agreement on price without state intervention in the form of taxes, subsidies or regulation. The competitiveness of the free market places great pressure on cost cutting: to deliver systems which often only minimally comply with regulations, and deliver asset protection at the most economical budget. With the value of assets, vessels and importance of business continuity growing, insurers are asked to underwrite almost incalculably high risk.  Unquestionably, the first priority of fire safety systems is to protect human life. Having said that, the economic benefits of a truly integrated, continuous, ultrasonic monitoring system in the future would be significant. Cargo damage remains an important negative result of on-ship fires, with 2 of the top 5 most expensive cargo claims on container ships in the last 10 years being fire-related according to the Swedish P&I Club Claims Analysis (2016). Fire protection measures should hence be understood as a worthwhile business investment. Yet we accept minimally compliant fire systems. Given both the crew lives and cargo are at stake, it seems unfathomable that regulations do not mandate fire systems should be permanently monitored rather than certified typically just once a year, if that, particularly since it is a regulatory obligation and or recommendation to ensure that crew can check these themselves.

3. What is the “ungoverned space”?

Who would build a ship or offshore platform and install a power generating or auxiliary machinery without installing emergency power systems or monitoring their condition states? Who today would consider installing an alarm system without monitoring its overall status, not only its actuation, and integrating the whole system into the ship safety management system, with central monitoring being an essential part of it? These are basic engineering principles: building in redundancy and constantly monitoring critical systems. 

Traditionally, the industry cares little about this ungoverned space, with too few qualified engineers considered subject matter experts. Yet when it comes to marine fire maintenance, never mind continuous monitoring, of gaseous fire extinguishing systems, there is a lack of knowledge amongst the majority of the industry, regarding the potential risks. Awareness should exist about the huge expenses incurred by fire, both in terms of costs upfront from the damage and long-term due to reputation and unknown losses or damage to seafarers, vessel integrity, and cost of downtime and recovery. Above all is the risk to human life presented by fire. Poor maintenance of suppression systems risk accidental fatalities due to lack of training about the lethal properties of CO2 (the predominant suppressant agent used on vessels, because it is the cheapest whilst being highly effective): when released it reduces oxygen levels to extinguish fire. Limited appreciation of the need for room integrity testing of protected spaces leads to minimal regulation compliance which could mean a failure of the fire system suppressing a fire because the room is unable to hold the discharged gas due to leaks of the space into which it actuates. 

4. Fire Extinguishing Systems

Gaseous extinguishing/suppression systems are installed to protect against special hazards in critical infrastructure at sea. They deliver the infrastructure resilience our advanced maritime society requires. If the hazard is special and the vessel is critical, then this is the case for the constant monitoring of the fire systems that aim to deliver their protection. There is a lack of knowledge of the characteristics of the various extinguishants and the types of fire for which they are suitable. For too many years the industry has been left to too few brilliant experts to determine safe outcome.

Two broad categories of ship and offshore extinguishing systems exist: sprinkler systems and pressurised gaseous systems. While the former can suffer leakage, the latter can cause catastrophic effect due to their pressures. These large gas cylinders are pressurised liquefied gases or non-liquefied gases that are pressurised on actuation. CO2 is permanently under 720 psi or 49 bar of pressure i.e. nearly 50 times atmospheric pressure (by comparison a cup of water at sea level exists at 1 bar or 14.5 psi). Its’ state changes under increased temperatures to one that is neither a liquid nor a gas. Gases under pressure are often effectively considered by the industry as single and passive cylinder columns of solid material from the perspective of their monitoring following installation. Whereas being under pressure and constantly changing under temperature they should be considered as active and dynamic systems requiring constant monitoring. These are not passive systems therefore; they are dynamic ones, and all dynamic systems under pressure need constant monitoring to ensure their effectiveness and longevity. An engineered marine fire system typically lasts 20 years, longer than some vessels! 

4.1. Traditional Cylinder Testing Methods 

Typical methods for on-ship regular cylinder inspection primarily consists of trained professionals weighing the chosen cylinder, to assess if there has been weight loss due to gas leakage. However, although this method is widely used, it ultimately holds risk as an unsafe practice in reality, requiring constant handling of tanks in a delicate, high-pressure state. Whilst weighing is the most commonly cited method, it may be practical in the light of new and improved technology to add ultrasound as a recommended method.

4.1.1. Poor Maintenance Practice

Marine servicing companies bid to service a ships CO2 system; this can comprise 200-600 x 45KG CO2 cylinders per ship. They can discharge accidentally. One of the highest probabilities of discharge occurs during their maintenance. Some service companies estimate that at one time 20% of a ships CO2 cylinders have discharged or partially leaked their contents and there are over 55,000 commercial vessels at sea at any time. On average, each cylinder will take 40 minutes to dismantle, weigh, record and re-install. Too many times therefore, even good servicing companies may not have the physical time to perform the inspection required, because the vessel may only provide them a few hours. But alongside them there are other companies who are said to randomly check some cylinders and then place “tested stickers” on the rest. Because the normal design concentration of CO2 of 34-72 v/v % is above the nearly immediate acute lethality level an extremely narrow safety margin exists for these systems. Its mechanism of fire suppression is through oxygen dilution to 8-15%, rather than the chemical disruption of the catalytic combustion chain as with other clean agents.

4.1.2. Anecdotal experiences

  • Safety pins being retained in position in the cylinder valves after installation.
  • Marine CO2 systems with 20% of the CO2 cylinders installed on commercial shipping being empty or partially filled.
  • Over-filled and under-filled cylinders.
  • Pipework and cylinders freshly painted but with severe internal corrosion.
  • Room integrity testing with questionable results and with the room integrity remaining un-monitored after testing.
  • Liquefied extinguishants being confused by installers with Inert gas systems.
  • There exists a lack of understanding of the organic compounds of some liquid extinguishants and their corrosive effect on the cylinder in the event of condensate ingress.
  • Shipping companies not implementing the FSS code of the IMO SOLAS regulations.
  • We have been regularly asked how to operate portable Portalevel™ liquid level indicators on dry powder extinguishers.
  • WIKA Instrument discovered 25% of pressure gauges failed in an audit of 250 plants.

The problems cannot be denied. The International Maritime Risk Rating Agency (2016) have declared fire safety to be the most common deficiency on tankers in October 2016, with 126 incidents. 

Why use ultrasound to test for watertightness?

Proper definitions of watertightness are crucial for proper maintenance of seals.

Watertightness and airtightness could be defined mathematically, using this formula for approximating the flow rate Q through an aperture:

Q=A√2gh
Q = the flow rate of fluid through the aperture (where the term ‘fluid’ here is taken to mean an ideal liquid or gas)
A = is the area of the leak aperture
g = the acceleration due to gravity acting on the fluid, and
h = the head of fluid.

This equation (which contains simplifications) is used to demonstrate how since no two meeting surfaces in a seal can ever truly be perfectly aligned, a leak aperture will always exist which will allow leaking of some rate under a head of water. Watertightness is hence defined as a maximum water leakage allowance per minute.

High pressure watertight doors are designed for pressures in excess of 100' (30.5m) (this is equivalent to to a pressure of 299 kPa/ or 3 bar). Typical applications include protection for ship power plants, high-pressure chambers, hydro-electric plants and diving/decompression chambers which are often found on oil platforms and support vessels. In these sensitive areas a small 1m2 watertight door is often expected to be able to resist the weight of 30 tonnes of water without buckling or allowing the protected compartment to flood, and as such the requirement for frequent and accurate preventative maintenance on these seals cannot be overstated.

Ultrasonic Testing of seals

Ultrasonic Technology is being rapidly adopted as a safe, easy and accurate method of identifying seal leak sites and has been quickly adopted by the Royal Navy to quickly identify any incorrectly installed MCT's. UT equipment has now been in service for 3 years aboard HMS Albion and HMS Bulwark, and has also recently been adopted this year by the Indian Navy, and Indian Coast Guard.

Different models of equipment vary, but in general UT equipment consists of two main units; a generator and a receiver. The generator produces an ultrasonic modulated tone, usually at a round 40kHz which is positioned on one side of the seal. The receiver is then used by the operator from the far side of the closed seal. If at any point the seal is imperfect, the ultrasonic signal will be able to pass though the seal through the leak, which can then be detected by the receiver. Some models of ultrasonic watertight integrity tester are capable of detecting leak apertures as small as 0.06±0.02mm in size. UT testing seals can provide the sensitivity to detect the smallest leaks, and can give two different types of readout scale: linear and decibel. The linear scale provides an intuitive measurement of the leak size, whereas the decibel scale allows for comparison of standards set by international classification societies. Use of UT is far more efficient that the methods described above, taking less time, requiring no clean up and is used in a portable, light-weight model for ease of use. Due to its convenience, UT tests can be conducted more frequently and can contribute to safety management and preventative maintenance procedures on board. Moreover, the accuracy of this method is unrivalled, and leak sites can be identified and specifically located quickly for the operator. Furthermore, ultrasonic indicators use safe and green technology; it that does not violate any environmental codes, which also means there are no IATA transportation restrictions

The Fleetsafe® Package

Gaseous extinguishing systems are highly pressurised, the risk of leaking and discharging is accepted as part of their use, shown in the regulations that demand their upkeep e.g. IMO SOLAS FSS Ch5. 2.1.1.3:

“Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the container”

Often this is misunderstood, this code specifically states that the crew must test their extinguishing installations in between the periodic inspection, maintenance and certification. Only having the annual inspection by accredited marine servicing companies is not enough – the crew must take responsibility for its own fire protection.  However, what must be noted is that the crew are often not trained or certified to shut-down, dismantle, weigh and re-install the gaseous cylinders – the traditional method.

Coltraco Ultrasonics focus on benefitting the crew; designing innovative ultrasonic solutions which promote safety culture, which the crew will be happy to use by being easy to operate, quick, accurate and a better method to traditional techniques.

The Portalevel® MAX Marine is designed primarily for the vessels’ crew to themselves inspect large fire suppression systems of up to 600 cylinders. The ease of operation in comparison to weighing, increases the ability of more regular and frequent checks, improving fire safety management onboard. Coltraco’s innovative method of inspecting leaking cylinders with ultrasonics, enables identification in under 30 seconds using Portalevel® with one person, instead of the traditional 15 minutes, with two people laboriously weighing.

This can be in-between the statutory annual maintenance and certification intervals provided by shore-based contractors. Thus, increasing the likelihood of tests being regularly conducted, in line with regulations and even going above and beyond for more frequent testing. By so doing, the crew will be creating a safer ship.

Coltraco Ultrasonics implemented the Safeship® concept, to promote protecting critical infrastructure at sea. Bad industry practice is unacceptable when fire risk may have catastrophic results due to risk to life, downtime in operation due to ship safety and repair work and incalculable reputational damage. The crew, cargo and vessel must be protected when at sea because it is it’s own fire brigade without accessibility to typical emergency services. This is a call to respond to regulations with a rigorous attitude, to go above and beyond, to provide security of life and infrastructure.

As a result, Coltraco designed the FLEETSAFE: a package of innovative safety tools to combat the above and comply with regulations

  • An ultrasonic watertight integrity tester
  • An ultrasonic thickness gauge
  • A bearing indicator
  • An ultrasonic liquid level indicator
  • A calculator which converts liquid level readings to weight.

With this package the hatch-covers, doors, MCTs, compartments, pipework, hulls, bulkheads, rotating machinery, pumps, sprinkler systems and gaseous extinguishing installations are protected. The package is based on integrity, from design, through to life-time support, and is accurate, reliable and easy to use for any crew members.

Standardisation in the Shipping Industry

Standardisation is required in the shipping industry to allow for confidence in technology by operators. Common standards ensures consistency, which promotes safety and efficiency. Standardisation is key to streamline processes and in the exchange of data – when utilised this will allow the shipping industry to embrace the huge potential that digitalisation has to offer the shipping industry.

Shipping needs to adopt an approach such as the aerospace industry, which is affected by international cooperation and strongly controlled by national and international regulations and standards in order to ensure safety, reliability, and cost-efficiency. In the aerospace industry, the Federal Aviation Administration and European Aviation Safety Agency generate the regulations and the airlines and member state national civil aviation authorities, such as the UK Civil Aviation Authority and Maintenance, Repair and Overhaul services implement them. A failure to certify that they have been implemented will result in an aircraft not being certified to fly.

In shipping the International Maritime Organisation (IMO) generates many of the regulations and its member flag states, such as the UK’s Maritime and Coastgaurd Agency, are expected to implement them. Indeed, they are subject to interpretation by them. The single most useful thing that the UK could do for shipping globally is to lead at the IMO so that its regulations are implemented through standardisation.

Case Study:

Speaking in from the expertise of Coltraco Ultrasonics (in the monitoring of gaseous extinguishing systems), below is an example of how standardisation will allow the shipping industry to become safer and ensure the implementation of regulations.

The regulations that currently govern gaseous extinguishing systems are the IMO SOLAS Fire Safety Systems (FSS) Code and the BS EN ISO 14520 standards. These require that the liquefied gaseous cylinders be checked for an agent loss of more than 5%, at which point they should be refilled or replaced.

Standardisation means that the crew have a responsibility to implement the regulations via regular testing, which enabled through smart ultrasonic technology and Internet of Things (IoT) IoT, should be done continuously to avoid negligence and unnecessary risk.

Smart technology provides the crew and ship owners with ease of inspection and understanding their extinguishing systems. However, the crew will not be able to refill the gaseous extinguishing system, and instead must rely on notifying the marine servicing company when they arrive at a port, despite the fact that they may only be at the port for a very short amount of time. Due to time pressures, the risk of not being able to find a contractor in time to fill the cylinders in the event of leakage is one that could jeopardise the safety of the entire ship when it is time to set sail.

Continuously monitoring the cylinders with ultrasonic sensors that utilises IoT can avoid this, because the network contribution. Using IoT enables the advance notification of the crew and shore based services whilst at sea. Therefore, preparations to address the issues can be made prior to docking to ensure the issues are resolved given the minimum time they have.

Although the implementation of the IMO SOLAS FSS and ISO 14520 codes with continuous monitoring and IoT could drive up costs of purchasing and installation, the long-term savings and benefits far outweighs the initial cost.

But for this to work seamlessly, there must be a standardisation so that the data that is received by shore-based operators from the vessel, is understood and actioned upon as per the IMO regulations. As shown by a new paper from DNV GL standardisation can enable the effective collection, storage, exchange, analysis and use of data, while contributing to improved data quality and sensor reliability in the maritime industry.

Protect your Turbines Against the Risk of Fire

As electricity generation becomes more reliant on renewable energy, wind power is becoming increasing important in the energy mix. As our reliance grows on wind turbines, keeping them fully operational and at reduced levels of risk becoming more important, and as a result, so does safety management. There are over 340,000 wind turbines around the world. Yet there are thousands of turbines without any fire system installed.

With predictions of much taller and more powerful turbines of 13-15MW to be implemented by the middle of the next decade, and thus fewer per project, ensuring that the they are in working order is essential, because the larger and fewer the turbines, the more costly they will be to operators in the event of fire damage.

Wind turbines require an active fire protection system, which includes but is not limited to detection (of flames, heat, gas, and smoke), alerting personnel and rescue services, and activating systems for fire suppression or extinguishing.

Coltraco Ultrasonics provide smart Firetest® solutions which enable wind turbine owners and operators to improve their fire safety management and reduce the risks to human life, business continuity caused by any downtime and thus minimise risk to reputation by delivering a Safesite®.

Focused on continued advancement of safety technology, Coltraco have now developed the Permalevel® Multiplex, a fixed fire suppression monitoring system, designed for continuous contents verification. Permalevel® is designed to ensure that fire suppression systems are always fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event of a fire. With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an uninterruptible power supply (UPS) and remote real-time monitoring, the Permalevel® offers the efficiency that is needed in a wind turbine.

For regular inspection, the Portalevel® MAX is a handheld ultrasonic liquid level indicator, which can service a cylinder in 30 seconds (in contrast to 15 minutes by traditional manual weighing) with accuracy of up to 1.5mm off the true liquid level. Portalevel® MAX builds on Coltraco Ultrasonics’ 30 years’ experience in designing, manufacturing and supporting ultrasonic liquid level indicating equipment, in 108 Countries and numerous market sectors and environments. The development program was born out of the desire to further improve on Coltraco’s existing 8 designs and taking on board feedback and opinions of our customers.

Bad industry practice is unacceptable

A ships fixed extinguishing system protects the machinery spaces. They allow an engine room fire to be responded to, with minimal risk to the vessels crew. However, the fixed extinguishing system has to be used properly and for this, maintenance is essential. Too often CO2 has been discharged without securing openings to the fire area first. The CO2 will leak through them aided by the thermal currents from the fire. The recent Gard publication states that, “Emergency response to engine room fires can be .. more efficient if the crew is properly trained in the safe use of the ships fire extinguishing system.. For the typical engine room fire involving flammable liquids it is important to introduce the required quantities of CO2 quickly to limit the escalation of the fire…The extinguishing capabilities of gas can be compromised if the integrity and tightness of the boundaries of the protected space are not sound … by excessive leakage of gas through open or improperly closed doors, vents or ventilation ducts.” If the seals to any of these are not sound, closing them will not entirely deal with this problem. The crew have to ensure that the CO2 contents exist, that the protected space can be sealed and that the pipework used to discharge the CO2 are clear of particulates that can clog up the nozzles and reduce the required design concentration of CO2 (or any clean agent such as NOVEC™ 1230 ) to the point where it cannot deal with the fire event.

Industry professionals have told us anecdotes of finding fire suppression system cylinders empty or only partially full, due to mismanagement and a lack of due diligence in complying with the regulations stated above. Additionally, there are anecdotes of wilful misdemeanours conducted by unprofessional fire servicing companies who failed to properly check cylinders. The contents of a cylinder have to be present for release in the event of the fire and therefore the Portalevel® MAX Marine offers innovative technology which cylinder weighing cannot. Bad industry practice is unacceptable when fire risk may have catastrophic results due to risk to life, downtime in operation due to ship safety and repair work and incalculable reputational damage.

Due to the quicker and easier method of servicing a cylinder with this device, and results which can be easily repeated for reliability and accuracy, Portalevel® MAX Marine allows vessels to be in full compliance with the FSS code in-between the annual certification intervals, because the crew will be happy to conduct contents checking themselves at sea. IMO SOLAS FSS Chapter 5 point 2.1.1.3. states: "means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the containers".

Continuous Monitoring is Essential

Continuous monitoring is no longer an option; it is essential for the protection against special hazards in critical infrastructure. Clean agents are designed to operate in limited spaces where there is a need for speed of suppression given the asset risk and where the space is occupied by people. They deliver the infrastructural resilience our advanced society requires. The assumptions in the installation, commissioning and maintenance of gaseous extinguishing systems is that they are highly pressurised but risk leaking and discharging. ISO 14520 specifically guides our industry as to these risks; In 9.2.1.3 The storage container contents shall be checked at least every six months as follows. : a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced. b) Non-liquefied gases: for inert gas agents, pressure is an indication of agent quantity. If a container shows a loss of agent quantity or a loss of pressure (adjusted for temperature) of more than 5 %, it shall be refilled or replaced. Therefore, at a standards level it is known that gaseous systems can become ineffective through accidental discharge and leakage and thus they do not serve to protect the critical infrastructure in such a case. To know the contents, you need to monitor it, and checking it every 6 months is not monitoring it.

Should we not just constantly monitor all of them and be in full compliance to the regulations and the risks that are so clearly described in our own core standards? If it is known and accepted that these are dynamic systems that are prone to leaking, but they are expected to deliver resilience and protection, then why are they left unattended for 6 months of the year? We would not do the same to an alarm system without monitoring it 24/7, so why are we not monitoring gaseous extinguishing systems? Let us apply 21st century science to a 100 year old issue and be done with it. A dynamic system needs monitoring. The neglect of continuous monitoring of the fundamental protection provided by the gaseous extinguishing systems is to the peril of the lives of occupants of the premises and at the risk of crippling financial loss to the facility comprising the critical infrastructure. To ensure that dynamic gaseous systems are protecting critical infrastructure in a safe and diligent manner, 6 monthly monitoring and maintenance is no longer enough. There is a call for continuous monitoring and this is something that cannot wait any more.

The Portalevel® Mini Nippon

The Portalevel Mini Nippon was created specially to serve the unique requirements of our Japanese Customer base. Using our well-proven 7th generation technological platform, it was specially adapted to manage the challenging Japanese manufactured cylinders. Providing users with hands-free operation for ease of use and highly reliable unit, it offers an ideal solution for inspecting CO2 Fixed Fire Suppression Systems.

Technical Specifications of Portalevel Mini Nippon

Here, we have enlisted technical specs available with this liquid level indicator. Take a look!

Dimensions

  • Height: 98mm
  • Width: 158mm
  • Weight: 45.5grams
  • Depth: 420mm

Verifiable Agents

CO2, H20, FM-200™, NOVEC™1230, old Halons such as 1301 and 1211, FE-13™, FE-25™, FE-36™, HFC-225 & 2271

Accuracy

+/-1.5mm (1/8 inch)

Display

  • LCD Numeric Digital Display with LED Bar Graph

Power Supply

4 x AA 1.5V Batteries (battery life 10 hours)

Classification

  • IP Rating 65
  • NATO Stock Number: 6680-99-275-5292

Sensor

TX/RX Dry Sensor

  • 14 mm diameter head
  • Contained within a magnetized sensor applicator;
  • Connected by BNC connectors to 1 m length co-ax cable

Standard Extension Rod Sensor

  • 1 meter in length
  • 28mm in diameter
  • Connected by bnC connectors to 1 m length co-ax cable.

Operating Temperature

  • -20°C to +70°C (68°F to 158°F)
  • Relative Humidity-5 % - 95 %

Warranty

  • Main Unit: 3 Years Warranty
  • Sensor: 1 Year Warranty
  • Lifetime Customer Support

Certificates

  • Classification Society Approved- RINA
  • CE
  • ISO 19011 Registered

Portalevel Mini Nippon Content

  • 1 Portalevel® Mini Nippon unit
  • 1 Wet Sensor
  • 1 28 mm Extension Rod
  • Ultrasonic Gel
  • 1 Hard Wearing Carrying Case
  • Calibration certificate

Why buy bearing indicators?

Almost all machinery that moves requires bearings. However, they are liable to degradation over time. Bearings will fail for a number of reasons but the key take away is that ALL bearings will degrade at some point and if they are left unchecked, maintained or replaced WILL fail. Knowing the root cause of damage can help prevent future failures. According to ISO 15243, damages left undiagnosed can actually mask the underlying cause if left too long. Most decay in bearing quality occur when lubrication has been used up in the bearing. Identifying when this happens and refilling the oil in the bearing a key way of extending life span.

1. Where are bearings used?

Below are a few examples of the industries and applications in which bearings are present. Many industries have machinery that requires some form of motion enabled by bearings.

1.1. Steel production facilities e.g. Cold rolling mill machinery.

1.2. Mining industry e.g. Machinery such as crushers, stackers, conveyors, vibrating feeders, magnetic separators, slurry and vacuum pumps, classifiers, agitators and compressors.

1.3. Paper processing industry e.g. Rolls, roll alignment, balance, and the condition of the electric motors and gearboxes.

1.4. Cement industry e.g. Mills, separators, roller presses, separators, conveyors, feeders, air compressors and fans.

1.5. Thermal power industry e.g. Gas and steam turbine generators

1.6. Maritime industry e.g. Diesel engines, gas turbines and nuclear reactor powered ships utilise bearings in all areas, from crankshafts to pistons and pumps.

2. Case study of bearing failure:

On 7 March 1997, the Polish flag general cargo vessel Lodz 2 was using one of its own cranes, discharging a general cargo of steel products, including bundles of steel pipes, from no. 2 hold and tween deck. The load, weighing approximately 8.6 tonnes, consisted of 18 lengths with diameters varying up to 273 mm. As the load reached the side of the ship, there was a violent jolt and a bang as the slew bearing failed, then the crane fell from its pedestal into the port tween deck of no. 2 hold. The crane was severely damaged and the badly twisted jib had to be cut up to remove it from the ship.

3. Why Buy a Portamonitor® Bearing Indicator?

84% of degradation to bearings occurs once installed. Monitoring can detect abnormalities caused by these and allow preparations for maintenance or replacement, ultimately avoiding failure and saving money. A failure of a bearing is not just the part itself, but for example in the marine industry, the cost to a vessel owner is repair, fitting and downtime in dock and loss of earning whilst not operational. Without systematic procedures and planned maintenance (enabled by condition monitoring) then cost can be very damaging to a business.

    • Portamonitor® is a sophisticated AE device that combines Distress® and db levels
    • Decibels indicate the actual noise signature of the bearing. By checking the noise of the bearing over time (whilst running at comparative speeds) as the noise increases, it indicates an increase in degradation of the bearing. This is used for continuous long-term monitoring, i.e. checking the bearing as part of scheduled maintenance, recording he readings each time and watching for a spike in readings
    • Distress provides an instant indication of bearing health. Readings over 10, indicate a bearing declining in condition
    • Sound generated by friction and impacts caused by poor lubrication or bearing damage propagates as a stress wave is detectable by the Portamonitor®.
    • Signal is processed at sensor level allowing quick and effective diagnostics.

4. Competitive Advantages of the Portamonitor®

Appropriate monitoring matters because false diagnosis can result in undue downtime, wasted time, money and resources.

4.1. When to use?

Portamonitor® can be used for pre-service (proof) testing as well as in-service (re-qualification) testing and condition monitoring.

4.2. Benefits of distress® readings

Distress® provides an instant indication of the health of the bearings. It measures the transient activity, such as impacts, friction and surface deformation caused by micro-pitting and fractures. Algorithms inside the Portamonitor® sort this data for comparison against acceptable limits categorized by a number.

4.3. Display

The display on the Portamonitor® will show a numeric value indicating the level of distress, for instance: 5-10 indicates the system in “OK”. Between the value of 10-15 indicates the system is “SUSPECT”, and requires further monitoring, whereas >15 indicates a “POOR” system and requires attention.

4.4. Low Cost & Money Saving

The Portamonitor® is low cost and is very easy to use and train crew and easy to integrate into scheduled maintenance. Using this regularly extends the lifetime of key pumps, bearings and gearboxes saving significant amounts of money over the lifetime of the vessel, extending the time between machinery replacement and ensuring failures do not occur at critical times.

See the Portamonitor

Following a fire, 40% of facilities experiencing business dis-continuity do not survive another 12-18 months afterwards.

Offshore gaseous extinguishing systems exist to serve, but we need to understand them so they can. Gaseous systems are pressurised and in that they are dynamic not passive ones. They have transformed industry safety across all sectors. However, the development of their servicing and monitoring equipment has remained stagnant, with many very advanced systems relying totally on annual inspections, or unreliable mechanical pressure gauges. These methods leave the status of fire suppression systems completely vulnerable between annual checks. These gases leak. It is not a widely-promoted fact in the fire safety industry, except by some experts, and by those who understand the physics behind pressurised gases. If the agent leaks, they may be insufficient gas to suppress a fire in the event they are activated. If there is no agent, the fire will continue to burn and may lead to catastrophe by loss of life, and certain business downtime. They are active and dynamic systems which require constant monitoring to ensure safety of life, and increase resilience and business continuity. Thus, saving time and cost long-term by improved monitoring. The “white heat” of technology shines as a beacon of hope to our industry and so too enables justification for customers to actively engage in the monitoring of gaseous fire extinguishing systems as an integrated and essential element to their business activity.

Permalevel® Multiplex is the only 24/7, 365 ultrasonic continuous monitoring system of fixed fire extinguishing systems cylinder contents. It can be configured to provide local and remote alarm. Integrated into the existing safety management systems by selected communications capabilities. Available only from Coltraco Ultrasonics, this is leading technology, coming to the market to fulfil the “Ungoverned Space” of fire safety across all industries, especially high value, safety critical ones. The Permalevel MultiplexTM is designed to ensure that fire suppression systems are always fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event that it is required for use. The Permalevel Multiplex reduces the need for labour by introducing remote, autonomous monitoring; the systems is mobile-device friendly so it is readily available on any hand-held device with web access. This protects people, data, and high value assets by improving safety management regimes by going above and beyond simply complying with regulations. This provides protection against claims raised in the event of fire by showing your facilities have been protected and well maintained.

Coltraco Customer Care: a case study

The lesser time taken to carry out these tests is valuable to owners and ship managers in that they can demonstrate without lengthy visual inspections that the vessel is ready in all respects to carry the cargo, meaning cargo loading can commence earlier. The results determined by electronic instrumentation are also extremely valuable to vessel owners, charterers, and cargo interests because they can all be assured the cargo worthiness has been determined to a high degree thereby assuring all that the chance of cargo damage by water ingress is a very low probability is a simple solution with few limitations and is easy to learn how to operate. Testing can be completed far more quickly, by just one person, in comparison to labour and time intensive hose testing. Testing can be completed on key areas: Cable Transit Seals provide a key element in maintaining the integrity of bulk heads and watertight seals onboard Naval, Offshore Oil & Gas and Marine assets. As one of the most neglected areas onboard, having the means to quickly identify the exact location and severity of issues in MCTs can dramatically assist Contractors and Fleet Operators to enhance the flood, fire & smoke protection that a correctly installed MCT seal provides.

By greatly reducing the chance of water ingress occurring – lives can be saved, vessel integrity, and cargo at sea – by implementing safer, improved and innovative methods, as mentioned above, of hatch cover testing. Coltraco measure their improvement in safety by continuing their Research & Development programmes with their partnered universities. Coltraco also base their improvements through customer feedback which they value strongly. The below is a testimonial from Captain J.F. Holmes, Botrans Ltd:

“Having recently returned our Portascanner® Watertight unit to the makers, Coltraco, for servicing and calibration, we are extremely pleased at the level of co-operation we received back from them, not only in continuing feedback but also in the manner in which the Company Management perceived our requirement from a cost effective means in bringing, not only the unit, but the carriage and storage container, back up to an operational condition, in a time sensitive and timely manner. The unit itself undergoes a relatively hard life in the field and on site, whilst in the hands of experienced surveyors but also in a tough environment. Our Portascanner® Watertight unit performed well during the entire period of use, proved rugged and we feel sure that if it had not required returning for mandatory calibration and certification, the unit would have performed well for many more years to come. Be that as it may, the added bonus from the unit's return is the updated readout and software which permits a more definitive execution of the reporting and documentation when on site, testing weather deck closing devices. Our dealings with the Coltraco Management and Servicing Team has been a gratifying experience and feel sure with the returned, serviced, calibrated and updated Portascanner® Watertight unit, it will continue to give us the professional edge in being able to continue to offer a complete service to Ship Owners and Time Charterers and other interested parties in the protection of transporting their commodities for years to come.”

The Ungoverned Space of Marine Fire Safety

Over the last few decades cargo has generally been increasingly transported in containers rather than as open bulk cargo, thus mistakenly leading shipping companies to disregard the importance of fire protection systems, instead focusing on transporting greater quantities facilitated by the container system. However, this outlook is dangerous and misplaced. The risk of fire is significant with growing incidences of fire events exposed in the trade press, posing a risk both to expensive cargo and to human life on-board the ships. With a movement towards autonomous shipping systems and smart-ships, the importance of remotely monitored fire-fighting systems could grow exponentially, providing the opportunity to monitor vessels from an external location. Technological developments and companies such as Coltraco Ultrasonics, are working towards this end goal. The current on-board fire-fighting facilities remain inadequate in the face of the capacity of such large vessels. Fire therefore remains an ever-present risk on the high seas.

Traditionally, the maritime industry treats fire protection systems as a necessary expenditure, rather than a means to safeguard valuable crew and cargo and maintain business continuity of the vessel. Owners focus on systems delivered at the most competitive rates rather than seeing fire protection as an investment. The definition of a free market is an idealised form of a market economy in which buyers and sellers are allowed to transact freely based on a mutual agreement on price without state intervention in the form of taxes, subsidies or regulation. The competitiveness of the free market places great pressure on cost cutting: to deliver systems which often only minimally comply with regulations, and deliver asset protection at the most economical budget. With the value of assets, vessels and importance of business continuity growing, insurers are asked to underwrite almost incalculably high risk. Unquestionably, the first priority of fire safety systems is to protect human life. Having said that, the economic benefits of a truly integrated, continuous, ultrasonic monitoring system in the future would be significant. Cargo damage remains an important negative result of on-ship fires, with 2 of the top 5 most expensive cargo claims on container ships in the last 10 years being fire-related according to the Swedish P&I Club Claims Analysis (2016). Fire protection measures should hence be understood as a worthwhile business investment. Yet we accept minimally compliant fire systems. Given both the crew lives and cargo are at stake, it seems unfathomable that regulations do not mandate fire systems should be permanently monitored rather than certified typically just once a year, if that, particularly since it is a regulatory obligation and or recommendation to ensure that crew can check these themselves.

Who would build a ship or offshore platform and install a power generating or auxiliary machinery without installing emergency power systems or monitoring their condition states? Who today would consider installing an alarm system without monitoring its overall status, not only its actuation, and integrating the whole system into the ship safety management system, with central monitoring being an essential part of it? These are basic engineering principles: building in redundancy and constantly monitoring critical systems. Traditionally, the industry cares little about this ungoverned space, with too few qualified engineers considered subject matter experts. Yet when it comes to marine fire maintenance, never mind continuous monitoring, of gaseous fire extinguishing systems, there is a lack of knowledge amongst the majority of the industry, regarding the potential risks. Awareness should exist about the huge expenses incurred by fire, both in terms of costs upfront from the damage and long-term due to reputation and unknown losses or damage to seafarers, vessel integrity, and cost of downtime and recovery. Above all is the risk to human life presented by fire. Poor maintenance of suppression systems risk accidental fatalities due to lack of training about the lethal properties of CO2 (the predominant suppressant agent used on vessels, because it is the cheapest whilst being highly effective): when released it reduces oxygen levels to extinguish fire. Limited appreciation of the need for room integrity testing of protected spaces leads to minimal regulation compliance which could mean a failure of the fire system suppressing a fire because the room is unable to hold the discharged gas due to leaks of the space into which it actuates. Gaseous extinguishing/suppression systems are installed to protect against special hazards in critical infrastructure at sea. They deliver the infrastructure resilience our advanced maritime society requires. If the hazard is special and the vessel is critical, then this is the case for the constant monitoring of the fire systems that aim to deliver their protection. There is a lack of knowledge of the characteristics of the various extinguishants and the types of fire for which they are suitable. For too many years the industry has been left to too few brilliant experts to determine safe outcome.

Two broad categories of ship and offshore extinguishing systems exist: sprinkler systems and pressurised gaseous systems. While the former can suffer leakage, the latter can cause catastrophic effect due to their pressures. These large gas cylinders are pressurised liquefied gases or non-liquefied gases that are pressurised on actuation. CO2 is permanently under 720 psi or 49 bar of pressure i.e. nearly 50 times atmospheric pressure (by comparison a cup of water at sea level exists at 1 bar or 14.5 psi). Its’ state changes under increased temperatures to one that is neither a liquid nor a gas. Gases under pressure are often effectively considered by the industry as single and passive cylinder columns of solid material from the perspective of their monitoring following installation. Whereas being under pressure and constantly changing under temperature they should be considered as active and dynamic systems requiring constant monitoring. These are not passive systems therefore; they are dynamic ones, and all dynamic systems under pressure need constant monitoring to ensure their effectiveness and longevity. An engineered marine fire system typically lasts 20 years, longer than some vessels!

Implement Constant Monitoring

Gaseous extinguishing/suppression systems are installed to protect against special hazards in critical infrastructure as their key objective. They deliver the infrastructural resilience our advanced society requires. If the hazard is special and the infrastructure critical, then this is the case for the constant monitoring of the suppression systems that aim to deliver their protection.

The assumptions in the installation, commissioning and maintenance of gaseous extinguishing systems is that they are highly pressurised but risk leaking and discharging. The regulations that sensibly underpin this assumption aim to identify their leak identification at an interval of every 6 months. A cup of water stands at 1bar pressure – approximately 14.5 psi. Gaseous systems vary in pressure from FM-200® or NOVEC™ 1230 at 25-30 bar, CO2 at 50 bar or 720 psi to Inergen at 300 bar or 4,500 psi. These are very highly pressurised systems. In engineering terms, they are “dynamic” systems, not passive ones.

So why then does the fire industry not constantly monitor them?

The core regulation enshrined in BS EN ISO 14520 -1:2015(E) and we should be proud it exists. But let us examine what it says. BS EN ISO 14520 -1:2015(E) reasonably assumes that the execution of its provisions is entrusted to people qualified and experienced in the specification, design, installation, commissioning, testing, approval, inspection, operation and maintenance of systems and equipment, and who can be expected to exercise a duty of care to avoid unnecessary release of extinguishant. Attention is drawn to the Montreal Protocol on substances that deplete the ozone layer. It is important that the fire protection of a building or plant or any other critical infrastructure be considered as a whole. Gaseous extinguishant systems form a part of the available facilities, but it should not be assumed that their adoption necessarily removes the need to consider supplementary measures, such as the provision of portable fire extinguishers or other mobile appliances for first aid or emergency use, access by a Fire Rescue Service or any other measures that can be applied as part of a wider fire protection plan.

Gaseous fire systems deliver the very resilience we need. But resilience means the permanence of capability and functionality. That permanence can only be delivered by constant monitoring of the systems that enable it.

The science of a gaseous extinguishing system is a complex one. The mathematics that underpin its science are demanding ones. But in simple terms gaseous systems are pressurised and in that they are dynamic not passive ones. They are there to protect critical infrastructure in a a safe and expeditious manner in the only way that a gaseous system can. We would not imagine an alarm system exists without monitoring it 24/7, but why are we still leaving unattended the very automatic gaseous clean agent extinguishing systems that protect us when even the core regulations of its installation and maintenance specifically allude to its potential to accidentally discharge or leak its contents ? Fortunately lead elements of the critical infrastructure community are asking the same question. So are the world’s insurance companies.

But should our own fire industry not answer the question by implementing constant monitoring 24/7/365 before it is asked of them by the very people it is helping protect ?

Speaking volumes

Leakage of fire suppression agents from firefighting systems remains an ongoing, complex problem, and one that is often incorrectly attributed to system failure. OMT speaks to Coltraco Ultrasonics about the extent of such incidents and the solutions developed by Coltraco to combat undetected leakage

The offshore sector may still be mired in recession at present, but the need to retain a vigilant eye on fire safety remains as vital as ever.

To some degree, offshore oil and gas companies are still haunted by the blaze and explosion that destroyed the Piper Alpha oil production platform in July 1988, causing the deaths of more than 160 personnel aboard the structure – a tragedy that resulted in some much-welcomed ‘toughening up’ of offshore safety requirements.

All the same, fire-related incidents still occur aboard many offshore assets, putting the burden on owners and operators to ensure that safety standards do not slip. This burden becomes more onerous when one considers that the majority of offshore companies are scaling back their budgets at present, as well as warm-stacking and cold-stacking some of their most valuable vessels and rigs.

However, companies have a duty to ensure the protection of personnel, as well as a natural incentive to safeguard some of the most expensive assets to be stationed at sea – as well as their own reputations – and fire safety is a factor that simply cannot be neglected. This is not purely a problem for the offshore sector: a study conducted by the Finnish Transport Safety Agency has revealed that, between 2004 and 2010, 800 fires were logged in European waters, approximately 10% of which were classed as ‘serious’ and 25% of which required external assistance to successfully extinguish.

Tailor-made installations

Dr Carl Hunter, chief executive and managing director of UK-based ultrasonic technology solution developer Coltraco Ultrasonics, tells Offshore Marine Technology: “Part of this issue is to do with the maintenance of gaseous fire extinguishing installations. Typically, an offshore rig or platform will be equipped with a number of these installations, a typical 45Kg C02 cylinder measures 1800mm in height and 250mm in width. The number will be determined between the asset owner and the contracted firefighting system provider, and be tailored to the specific vessel area.”

As such, the fire extinguishing installation may either contain CO₂ - which, as an oxygen-suppressing substance, is suited to unmanned areas aboard the vessel/platform, including machinery spaces – or FM ™200 or Novec ™ 1230, which are preferred, non-toxic and environmentally friendly choices for the wheelhouse, crew quarters and mess.

Equally as important, Hunter continues, this tailored arrangement will see the firefighting system provider determine the correct amount of extinguishing agent for each area. “the design concentration itself will have up to 20% excess applied to the overall installation,” he explains. So, if it is calculated that it will require 100kg of agent to successfully suppress a fire in a particular vessel area, the system provider might allocate three 50kg cylinders to cover this location.

Agent leakage

With this in mind, it is therefore quite shocking when Hunter recounts: “Anywhere between one-in-ten to one-in-five cylinders, when inspected, have been found to be partially or fully empty.” He adds: “We hear about onboard fires and vessels reporting that the extinguishing installations ‘failed’ to put out the blaze – but failure would have been impossible had these installations been checked to ensure they were full.”

Unfortunately, it’s not uncommon for gaseous extinguishing agent to leak from these cylinders. “This is to be expected when such firefighting equipment is stored on land, let alone aboard a vessel for 365 days a year,” says Hunter. In an offshore environment, fluctuations in temperature (especially if an offshore asset is transferred between climes as disparate as those of the North Sea and offshore Brazil, for example) and structural stress can acerbate damage of the cylinders’ seals and cause accidental discharge of the extinguishing agent.

“Gaseous extinguishing systems are highly pressurised,” Hunter adds. “The risk of leaking and discharging is accepted as part of their use in the regulations that demand their upkeep.”

The result? A depleted cylinder, containing only half of its allocated agent, runs out of the substance before the fire is properly suppressed. Subsequently, the fire rages on, destroys the area and possibly spreads to other sections of the vessel – or even produces an explosion. Later, in the post-incident analysis, the cylinder is incorrectly judged as to have ‘failed’.

Crew qualifications

The regulations mentioned by Hunter include ISO 14520-1:2015, which specifies: “If a container shows a loss of agent quantity or a loss of pressure (adjusted for temperature) of more than 5%, it shall be refilled or replaced.” Even a loss of 5% can be sufficient to ensure that the cylinder does not play its full role in quelling the fire.

In addition, IMO’s International Code for Fire Safety Systems (FSS Code) – and, in particular Chapter 5, section 2.1.1.3, which focuses on checks for fixed installations such as these cylinders – states: “Means shall be provided for the crew to safely check the quantity of the fire-extinguishing medium in the containers.”

This latter requirement throws up several questions. The wording of that particular section has a worrying vague ring to it. Hunter clarifies: “This code specifically states that the crew must test its extinguishing installations in between the periodic inspection, maintenance and certification. Only having the annual inspection by accredited marine servicing companies is not enough – the crew must take responsibility for its own fire protection.”

However, the next question should be: is the crew necessarily trained or qualified to conduct such checks? As Hunter puts it, most seafarers undertake adequate drilling training when it comes to fire response, but not so many are actually instructed in how to correctly calculate the volume of agent in each cylinder. This can be a complex and time-consuming process, involving shutting down each cylinder and dismantling it, weighing it to ascertain the amount of extinguishing agent, and then assembling and reinstalling it again.

Hunter estimates that this process usually takes a minimum of 15 minutes, and requires input from two able-bodied persons, per cylinder. Taking this as baseline, consider a platform or floatel equipped with anywhere from 200 to 600 such cylinders: properly dismantling, weighing and reassembling each one constitutes a prolonged and unenviable task. It is a task that needs to be done, as Hunter highlights: “When a ship is at sea, it must be its own fire service,” he says. Unfortunately, though, the tedious and repetitive nature of this work can lead to far bigger problems, such as corner-cutting, rushed and inadequate checks and even deliberately fraudulent reporting.

“It’s not so much the major players – the BPs or Shells – that give cause for concern: it’s some of the smaller operators who are more likely to skimp on safety checks,” Hunter warns. Given the complex and specialist nature of these firefighting systems, and of gaseous detection in general, it can be difficult to know what to look for when assessing the validity of safety reports. This can be a particular hurdle for new surveyors or port inspectors, he adds, and particularly for those who have, to date, spent more of their time in the office or classroom than at sea.
“We’ve heard of surveyors, straight out of college and unused to maritime culture, boarding vessels where crew members have thrown down a bathroom scale next to the firefighting cylinders, to try to convince them that they are conducting regular safety checks,” Hunter says. In some cases, crew members have even intimidated inexperienced or nervous surveyors and inspectors into backing down and giving their seal of approval: in other parts of the world, corruption can be sufficient to get the right boxes ticked.

Handheld solution

For its part, Coltraco Ultrasonics has developed a range of patented solutions to speed up the cylinder-checking process without compromising on safety standards. The company manufactures two particular tools specifically for this purpose: the PortalevelÒ MAX Marine and the PortasteeleÒ Calculator application. Used in conjunction by a single person, Hunter claims, these two products can enable crew to identify a leaking cylinder (or one that has previously leaked agent) within as little as 30 seconds.

The first step is to place the Portalevel MAX Marine against the side of the cylinder. This 160mm (h) x 82mm (w) x 30mm (d) monitor pings an ultrasonic signal into the cylinder, which allows the user to “pinpoint the liquid level of suppressant agent”, Hunter says. This data can be logged and saved for future transfer to a PC or similar device, and is time-stamped for authenticity, so that operators/owners and crew can prove that they have carried out adequate checks in compliance with existing safety regulations.
In this way, the liquid level height has been obtained. However, it is not a given that the user will know how to convert this figure to determine the weight and mass of the extinguishing agent – nor that they will have the time to sit down and manually calculate hundreds of such readings.

The second step, then, is to feed the data captured by the Portalevel MAX Marine into the Portasteele® Calculator app. Hunter elaborates: “The app can be installed on a 5” or 7” tablet. The user inputs information related to: the extinguishing agent type [ie, CO2, Novec 1230, etc]; the cylinder dimensions; the temperature of the agent; and the liquid level height. The Portasteele® app then instantly provides the agent’s weight.” This process can also be conducted vice versa, inputting the suppressant agent’s mass/weight to generate a reading for liquid level height.

The ‘ungoverned space’

Of course, these solutions cost money, and there is no doubt that Coltraco Ultrasonics has products it wishes to sell. However, Hunter counters: “Some of the offshore platforms out there cost up to US$1-3 billion, before you consider annual maintenance and manning costs: why would any owner quibble about a solution that costs about US$1,000 and which can save them significant costs and time in the long term ? It’s akin to investing in a new house but deciding to not buy a fridge, in order to ‘save money’.”  There are also elements that money cannot replace – such as lost lives and a shattered reputation within the industry – should a rig or platform fail to contain a serious conflagration. Hunter comments: “Chances must not be taken when lives are at risk and when a vessel is at sea: this is all the time.”

Still, the message would appear to be spreading. Hunter estimates that Coltraco’s technology is present aboard “90% of all offshore platforms in the North Sea, 20% in the Gulf of Mexico and 30% across Asia,” and the company exports approximately 89% of its output, covering 109 countries, across 19 sectors (including maritime and naval, energy and power).

What does remain unknown at this stage is how the lay-up of myriad vessels, rigs and platforms in the past two to three years might have affected their onboard firefighting systems. As Hunter mentions, even during periods of lay-up, most responsible owners and operators will continue to carry out maintenance checks aboard these assets, with fire management system contractors presumably ensuring that any leaking cylinders are indeed refilled or replaced, as per ISO requirements.

However, we cannot assume this is the case for every company and every asset. Coltraco Ultrasonics has subsequently developed the concept of the ‘ungoverned space’ – described as being “an area where either the regulations of the protecting systems of the critical infrastructure are not effectively providing consistent and reliable safety.” We cannot know how many such ‘ungovernable spaces’ are out there – but, in the event of permanently shut-down or cold-stacked assets, there could be sufficient neglected areas to put the entire vessel or structure at risk.

Hopefully, when the offshore sector bounces back from its current doldrums, owners and operators will be well equipped to recommence operations as quickly as possible. Whatever solution they turn to, however, they would strongly be advised not to neglect their firefighting systems before they return to work: the consequences, otherwise, could prove disastrous.

Protecting your crew: using ultrasonics to create a Safeship®

The NTSB (National Transportation Safety Board) have recently investigated the cause of the 2015 El Faro disaster. SS El Faro was a United States-flagged, combination roll-on/roll-off and lift-on/lift-off cargo ship crewed by U.S. merchant mariners. All 33 crew members tragically died in the sinking, when El Faro sailed from Jacksonville into Hurricane Joaquin, while heading to Puerto Rico. The wreckage was discovered more than 15,000 feet below the sea surface, Northeast of Acklins and Crooked Island, Bahamas. 

The NTSB have concluded that gaps in safety management contributed to the sinking of the El Faro. One of the significant issues was “poor watertight integrity which allowed seawater into the ship” stating that this accident may have been avoided if “crew had more information about the status of the hatches”.

In fact, in the SOLAS Reg II-1/11.1  it states that hatches and watertight seals must be regularly tested: “Where a hose test is not practicable [sic] it may be replaced by [sic] an ultrasonic leak test or an equivalent test. In any case a thorough inspection of the watertight bulkheads shall be carried out.” The tragedy of the El Faro has exemplified why it is crucial for the watertight integrity of vessels to be regularly and easily tested by the crew. The importance of continually maintaining seal integrity must take a more prominent position in ship maintenance scheduling.

A lack of proper servicing of seals can lead to deterioration which endanger the lives of the crew, vessel and cargo.  One British manufacturer whose mission is to deliver the Safeship® to prevent El Faro type incidents occurring again is Coltraco Ultrasonics. They are committed to improving safety for people, assets and vessels at sea. They focus on benefitting the crew; designing innovative ultrasonic solutions which the crew will be happy to use by being easy to operate, quick, accurate and a better method to traditional techniques. Thus increasing the likelihood of tests being regularly conducted, in line with regulations and even going above and beyond for more frequent testing. By so doing, the crew will be creating a safer ship.

Ultrasonics is proven to be the quickest, easiest and most efficient method of testing watertight & weather-tight seals of hatch-covers, doors, multiple cable transits. The Portascanner® WATERTIGHT is the most accurate model of its kind – proven to 0.06mm (+/-0.02mm). This is designed primarily to enhance the ease and accuracy with which critical watertight, airtight or weather tight seals can be inspected for leak sites or areas of reduced compression in the seal. The ultrasound generator emits a modulated signal of a specific frequency of ultrasound (in most cases 40,000Hz). The receiver then picks up the signal and converts it into a result indicating watertight integrity. The easy to use PortascannerÒ WATERTIGHT allows crew member to check for failing seals whilst at sea which allows for prompt maintenance. 

Avoid negligence and work towards creating the Safeship® with Coltraco Ultrasonics.

Coltraco Ultrasonics is a leading British designer and manufacturer of innovative ultrasonic technology operating in 109 countries across the offshore markets for over 30 years. www.coltraco.com/news.

The Mathematics of Monitoring Gaseous Extinguishing Systems & Room Integrity

Applying Mathematics

The fire industry calling is a noble one. It is uses scientific principles to enable its very existence. The fire industry, however, calculates fire engineering designs based on formulas that its technicians have no way of understanding or verifying are accurate. The industry needs a Resident Mathematician to ensure that the formulas they use are correct. Fire engineers do not always understand the physical properties of the clean agents they use. Some do not wholly appreciate the impact of temperature on the state of an agent or its pressures. Novec™ 1230 for instance is an organic compound which deteriorates quickly to a point of non-effectiveness if poorly handled and stored. These problems and many more can be solved in the fire industry by the application of fundamental scientific and engineering principles. But they can only be proved by the application of the mathematics of them. Coltraco are at the vanguard of this in the fire industry.

Clean Agents

Are pressurised liquefied gases or non-liquefied gases that are pressurised on actuation. CO2 is permanently under 720 psi or 49 bar of pressure ie nearly 50 times atmospheric pressure (by comparison a cup of water at sea level exists at 1 bar or 14.5 psi). Its state changes under increased temperatures to one that is neither a liquid nor a gas. Gases under pressure are often effectively considered by the industry as single and passive cylinder columns of solid material from the perspective of their monitoring following installation. Whereas being under pressure and constantly changing under temperature they should be considered as active and dynamic systems requiring constant monitoring. These are not passive systems therefore; they are dynamic ones, and all dynamic systems under pressure need constant monitoring.  

We achieve this

By our ability to establish the liquid contents of liquefied clean agents – through UL-approved Portalevel™ MAX and the constant monitoring system, Permalevel™ Multiplex. Once we do this we can establish their weight and mass – through Portasteele™ Calculator (the world’s first product capable of this). If we can monitor their pressure too then we can monitor both the pressure of the gas above the liquefied agent such as in Novec™ 1230 and the pressure of non-liquefied gases such as Inergen or Nitrogen.

Constant Monitoring  of Gaseous Extinguishing Systems

A data centre is expensive to build and maintain. It generates significant heat. Every bank with a branch network has hundreds of them. The value of them are very high but the value of their inability to sustain business continuity is far higher than their physical assets. Almost incalculable. And yet Insurers are asked to underwrite them and the fire industry to deliver their protection at the cheapest price. Who today in the security industry would consider installing an alarm system without

monitoring its status not only its actuation and integrating the whole of it to the building management system with central monitoring being an essential part of it ? Who would build a ship or offshore platform and fit it with say power generating auxiliary machinery without installing emergency power systems or monitoring their condition states ? These are basic engineering principles.

All good engineering demands the monitoring of dynamic structures and a highly pressurised cylinder is a dynamic structure. It is designed to protect a critical infrastructure or asset. Without constant monitoring a risk is generated in the very environment for which it is designed to reduce risk. The risk is not only to the asset, but to the people who work in the asset and their ability to enable business continuity in the high value asset under risk. We aim to be the lead technical authority in the constant monitoring of gaseous extinguishing systems during the life of the system once it is installed and commissioned.

Room Integrity Monitoring - There remains a wider problem too

This is essential under ISO 14520 where gaseous extinguishing systems have to be designed in relation to the discharging agent hold-time (if the room cannot hold the agent because of leaks the agent will disperse and not extinguish the fire) and discharging agent peak pressure (if the pressure is too high for partition walls or suspended ceilings they will be blown apart or damaged and possibly destroying the room integrity). At the design stage of a fire extinguishing system rooms are tested for room integrity by positively pressurising a room and detecting escaping pressure to verify that the room itself into which the gaseous extinguishant discharges on actuation can both hold the agent after its discharge and hold its pressure on actuation. The fire system is then installed and commissioned. But over the next 10 years few further tests are made on room integrity and the cylinders merely hydrostatically tested to ensure they can cope with their design pressure limits. How can one be sure therefore that on actuation the room will hold the discharged agent to extinguish the fire and its partitions and ceilings are capable of withstanding the pressure of the agent on discharge? A building is like a ship at sea. It turns, stresses & bends as any structure does. It ages and leak sites develop. Coltraco is generating capability that will allow for the constant monitoring of room integrity.  We aim to be the lead technical authority in the constant monitoring of room integrity during the life of the gaseous extinguishing system once it is installed and commissioned.

Conclusion

The fire industry has access to customers who depend on it to deliver fire engineering to protect their risks. Insurance companies underwrite that risk. But the mathematics of its failure are high, whether in the application and understanding of the formulas they use to calculate design concentrations of gases or flow rates or in the deployment of fundamental engineering principles to protect dynamic pressurised systems and the structures they are working so hard to protect against the risk of fire.

Safesite Solutions: the future is 24/7 constant monitoring

Faced with this problem, a leading UK Nuclear family approached Coltraco Ultrasonics in 2003 and commissioned the first Permalevel®. Focused on continued advancement of safety technology, Coltraco have now developed the Permalevel® Multiplex, a fixed fire suppression monitoring device, designed for permanent contents verification. The Permalevel®  Multiplex    is  designed  to  ensure  that fire  suppression  systems  are  always  fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event of a fire at a nuclear power plant.

The application of the Permalevel® reaches further, with customers using this equipment in alternate specialist and confidential manners to ensure safety in the station. With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an interruptible power supply and remote real-time monitoring, the Permalevel® offers the efficiency that is now a requirement at nuclear energy sites. The likes of the Atomic Energy Authority asked Coltraco Ultrasonics to tailor make them a solution to constantly monitor a special application using the Permalevel® Single Point for over 10 years.

The Portascanner® 520 is the most mathematically accurate device available providing precise data concerning leak locations and aperture. It is unrivalled in its precision, non-invasive methodology and ease of use, and is the first unit of its kind to be available for a holistic approach to fire safety in complement to Coltraco’s range of equipment for testing fire extinguishing systems.

It is perfectly positioned to work alongside Door Fan testing in order to meet the total requirements for fire safety regulations and ensure the continuous fire protection of rooms using Clean Agent Fire Suppression systems. As Door Fan Testing has been proven to be a reliable and trusted method of room testing by industry experts, it is expected that its dominance shall continue in the near future. The immediate use of the Portascanner® lies in its improvement of the final stage of room integrity testing –  the search for leak sites in the case of a leakage excess –  for which it can vastly improve accuracy and operational efficiency. A device such as this has never been used before in this industry, and is the first to place emphasis directly on this important aspect of room integrity testing.

Wind turbines require an active fire protection system

It is estimated that 0.3-0.5 fire incidents occur per 1000 wind power stations (onshore and offshore) every year (Technical Research Institute of Sweden). 10-30% of all loss-of-power-generation incidents in wind power plants are due to fire.

Potential ignition sources are mainly inside the nacelle where there is fast moving machinery (generators, gearboxes e.t.c) which creates heat and combustible oil and solid material in the. Even with the incredible engineering and safety measures in place, a fire can ignite and develop, leading to the possible complete destruction of the turbine.

Wind turbines require an active fire protection system, which includes but is not limited to detection (of flames, heat, gas, and smoke), alerting personnel and rescue services, and activating systems for fire suppression or extinguishing. Due to the height and location of wind turbines, classic firefighting methods come up against their limits and therefore fire extinguishing systems that use gases such as carbon dioxide, inert gases or clean agents such as FM-200® and Novec™1230, which are especially appropriate for dealing with fires in electrical systems because they extinguish the fire quickly whilst not damaging the electrical systems or the compartment in which they are being discharged.

Regulations demand maintenance of the systems to ensure that they are operational in the event of a fire: ISO 14520-1:2015(E) assumes that these systems accidentally discharge and leak. 9.2.1.3 The storage container contents shall be checked at least every six months as follows. a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted

for temperature) of more than 10 %, it shall be refilled or replaced.”

The reality is that gaseous systems are checked for contents annually because they are pressurised and anything that is dynamic offers risk of loss of contents, but this fails to deal with the probability of discharge or leakage for the 364 days per annum in the interim between certification checks.

Coltraco have now developed the Permalevel® Multiplex, a fixed fire suppression monitoring system, designed for continuous contents verification. Permalevel® is designed to ensure that fire suppression systems are always fully operational and that no accidental discharge has occurred, which could affect the effectiveness of the overall fire protection system in the event of a fire.

Gaseous extinguishing instillations are difficult systems.

There are few who understand them in all their complexity. Vessels extinguishing instillation are its essential defence against the risk of fire at sea. The main factor that needs to be understood is that they must be able to actuate, or release their gas, in the event of a fire. Surely an extinguishing instillation should extinguish? This may seem like an obvious point, but on further investigation the difficulties with this statement arise. What if the extinguishing instillation cannot actuate fully because there isn’t enough gas within the cylinder? Gaseous extinguishing systems are highly pressurised, the risk of leaking and discharging is accepted as part of their use, shown in the regulations that demand their upkeep e.g. IMO SOLAS FSS Ch5. 2.1.1.3:

“Means shall be provided for the crew to safely check the quantity of the fire extinguishing medium in the container”

Often this is misunderstood, this code specifically states that the crew must test their extinguishing installations in between the periodic inspection, maintenance and certification. Only having the annual inspection by accredited marine servicing companies is not enough – the crew must take responsibility for its own fire protection. However, what must be noted is that the crew are often not trained or certified to shut-down, dismantle, weigh and re-install the gaseous cylinders.

Adding to this, the details of their leakage within the regulations which is troubling. ISO 14520-1 clearly states that:

“If a container shows a loss of agent quantity or a loss of pressure (adjusted for temperature) of more than 5 %, it shall be refilled or replaced”

Given that the gaseous systems are designed specifically to the individual need of the vessel then a 5% loss of agent may mean that they would not fully extinguish the fire. In a recent article by the Maritime Executive, Captain Madden urged crews to routinely and properly inspect and test fixed firefighting systems; “too often they are found with… concerns about leakage”. The only way to determine a cylinder is free from leakage is to check its contents. But if the crew cannot weigh their own cylinders, because they are not certified to do so, then how is it possible?

CO2 UK Marine Equipment Directive (MED) UK/EU legislation with US Coast Guard Mutual Recognition 7.3.2.6:

“Means should be provided to verify the liquid level in all the cylinders, either by weighing the cylinders or by using a suitable liquid level detector.”

Our expertise

We pride ourselves in researching, designing and manufacturing the most up to date, efficient and hardy ultrasonic liquid level detectors. The MAX Marine is designed primarily for maritime applications where either third party service companies or the vessels’ crew themselves inspect large fire suppression systems of up to 600 cylinders. The ease of operation in comparison to weighing, increases the ability of more regular and frequent checks, improving fire safety management onboard. Our innovative method of inspecting leaking cylinders with ultrasonics, enables identification in under 30 seconds using Portalevel® with one person, instead of the traditional 15 minutes, with two people laboriously weighing. Using ultrasonic technology - to pinpoint the liquid level of suppressant agent in the cylinders of the extinguishing system- testing is quicker and easier.

Portalevel® MAX enables its users to go above and beyond minimal regulations compliance, thus becoming industry leaders. It’s not just us that say we lead the industry, we have recently been shortlisted for the Seatrade Cruise Awards, ‘Supplier of the Year’, because of our supply to Carnival Cruises. Carnival Cruises chose Coltraco to supply the Fleet with the UL-Listed and ABS approved Portalevel® MAX Marine. The Carnival Fleet is made up of 25 vessels, varying in size from 70,000-120,000 dwt, accounting for 21% of the worldwide cruise market. The safety of their ships is integral for the continuation of their business success and it can be for yours too.

Combined with the MAX Marine, The Portasteele® is an advanced calculator application, that converts the liquid level height of C02, NOVEC™ 1230 and FM-200® liquefied gaseous extinguishant agent readings taken on an ultrasonic non-destructive liquid level indicator device into the agent weight/mass. Furthermore, the Portasteele® can convert an expected agent weight back to the required liquid level allowing users to anticipate where the level should be.

The maintenance of instillations has to be a priority. It need not be expensive or time consuming, we will support you in ensuring the safety of your crew and vessel. Tragic case studies of incidents such as MSC Flaminia prove that fire safety onboard must be a priority. We are proud that we can make your critical safety processes more effectove. There is no reason to minimally comply with the regulations and chance the effectiveness of the gaseous extinguishing instillation. We are here for you.

Where can the Portascanner® WATERTIGHT be used?

Portascanner Watertight is a portable Ultrasonic Hatch Cover Tester and Watertight Integrity Indicator for testing watertight and weather-tight seals. It is ideal for checking the hatch-covers, doors, cable transit areas, scuttles, flanges, shell doors, steering gear hatches and others. Coltraco has designed this product to enhance the ease and accuracy with which critical watertight, weather tight and airtight seals can be inspected for leak sites or areas of reduced compression in the seal.

Application Hatch Cover Tester

Ultrasonic hatch cover tester is best for the following applications:

Bulk Carrier Hatches

The Portascanner® Watertight is used onboard bulk carriers for inspecting the Watertight or Weather-tight hatches for leak sites. The magnetic generator can be positioned just inside the hold, on the hatch combing, removing the need to climb down to position the generator at the bottom of the hold on the tank top.

It is used by the crew for regular maintenance to dramatically reduce the risk of cargo damage from water ingress, and by Marine surveyors for carrying out P&I, Classification Society or Insurance surveys.

Watertight Doors

Watertight Doors on offshore Oil & Gas Rigs, Naval and Marine Vessels are regularly inspected & maintained to ensure the integrity of the Bulkheads and watertight barriers are secure. If these areas are neglected, there can be drastic impacts on flood prevention in the event of a major incident, which is exactly what the Portascanner helps to avoid. Removing old fashioned and inaccurate chalk testing, the Portascanner Technology provides a very quick and accurate method to identify problem areas and fix the issues that exist within these seals.

Multiple Cable Transits (MCTs)

Cable Transit Seals provide a key element in maintaining the integrity of bulkheads and watertight seals onboard Naval, Offshore Oil & Gas and Marine assets. Portascanner being a multiple cable transit areas testing device is efficient in checking the condition of this main element. As one of the most neglected areas onboard, having the means to quickly identify the exact location and severity of issues in MCTs can dramatically assist Contractors and Fleet Operators to enhance the flood, fire & smoke protection that a correctly installed MCT seal provides.

For further information and inquiries, leave a message for Coltraco Customer Service.

 

CEO Message

Integrity and Science Key to Our Culture of Performance

Dear Coltraco Customers, Strategic Partners and Distributors,

Integrity is our defining value. Performance is its consequence. We understand that our customers have choices, and how we perform determines whether customers choose us. Coltraco’s Code of Ethics does not merely require compliance with laws. It embodies a Commitment to positive behaviours that build trust, promote respect, operate with distinction, with courtesy and global levels of performance, demonstrating our integrity and delivering customer performance.

We honour our commitments, communicate transparently, and act with honour. Ethics are the foundation of our performance culture and our science-based approach. We lead in specific technologies delivering the watertight integrity monitoring of marine structures and the monitoring of fixed liquefied gaseous fire extinguishing systems and the room integrity of protected space to ensure agent hold-times post-installation. We show this by our understanding of the science in them and the mathematics that explain them.

I would like to thank you for your business and for the relationships with our Customers, Strategic Partners, Distributors and ODAs who we value so highly.

My kindest regards,
Carl

Carl Stephen Patrick Hunter BA(Dunelm) Hon DSc FRINA FIMarEST MRAeS
CEO & Managing Director
Coltraco Ultrasonics Limited
46-47 Mount Street, Mayfair, London W1K 2SA
United Kingdom

Tel:  +44 20 7629 8475
Fax: +44 20 7629 8477

Call Now : +44 207 629 8475

 

References in PDF Format

 

Underwriters LaboratoriesUnderwriters Laboratories

 

Reference Alpha Fire UK Portalevel MAX Sept 2012

Reference Portascanner-II CSD MOD Albion and Bulwark

Quotation.

Quotation

Support.

Support

About Coltraco Ltd.

About

 
 

Request a Quotation

Online Submission

Click Here

Call: +44 207 629 8475
Our customer support line is open during UK
business hours
Mon-Friday, 9.00am - 5.00pm GMT

Email: sales@coltraco.co.uk
Enquire via email and a dedicated
member of the sales team will deal
with your request personally.

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.